Chemistry, asked by borabeauty20, 18 days ago

Light of wavelength 4000 Å falls on the surface of cesium. Calculate the energy of the photoelectron emitted. The critical wavelength for photoelectric effect in cesium is 6600 Å. ​

Answers

Answered by Starrex
8

Aиѕωєr —

Energy of the photoelectron emitted = \bold{1.95\times 10^{-19}J}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

Giνєи —

Wavelength of light = 4000A°

The critical wavelength for photoelectric effect for cesium = 6600A°

Tσ Fiиd —

The energy of the photoelectron emitted .

Sσℓυтiσи –

Maximum energy of photoelectron emitted = Initial energy - photoelectric energy

\qquad\qquad\red{\bigstar}\underline{\boxed{\large\bf{ E_{max}= E_{i}-E_{p}}}}\red{\bigstar}

 \qquad\qquad\rm{\implies E_{max}=\dfrac{hc}{\lambda_{1}}-\dfrac{hc}{\lambda_{2}}}

rє —

\boxed{\begin{array}{cc} \\  \qquad \sf {\leadsto h = 6.6 \times 10^{ - 34} joule - second}  \\  \\   \sf {\leadsto c = 3 \times  {10}^{ 8} m {s}^{ - 1}}  \qquad  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf{\leadsto \lambda_{1}=4000A°}  \qquad \qquad  \:  \:  \:  \:  \: \\   \:  \:  \:  \sf{=4000\times 10^{-10}m} \\  \\  \sf{\leadsto \lambda_{2}=6600A°}  \qquad \qquad \:  \:  \:  \:  \:  \\   \:  \:  \:   \sf{=6600\times 10^{-10}m} \\  \end{array}}

Oи Pυттiиg Vαℓυєѕ

 \qquad\qquad\rm{\implies E_{max}=6.6\times 10^{-34}\times 3\times 10^{8}\left(\dfrac{1}{4000\times 10^{-10}}-\dfrac{1}{6600\times 10^{-10}}\right)}

 \qquad\qquad\rm{\implies E_{max}=19.878\times 10^{-26}\left(\dfrac{2600\times 10^{-10}}{264\times 10^{-15}}\right)}

 \qquad\qquad\rm{\implies E_{max}=195.768\times 10^{-21}}

 \qquad\qquad\rm{\implies E_{max}= 1.95\times 10^{-19}J}

 \large{\bull} Hence , \bf{1.95\times 10^{-19}J} Energy of photoelectron emitted .

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions