Physics, asked by azmat777, 8 months ago

Light of wavelength 6328 Å is incident normally
on a slit having width of 0.2 mm. Width from first
minima to first minima of diffraction pattern on a
screen 9m away will be:
(1) 0.36° (2) 0.18° (3) 0.72 (4) 0.090

Answers

Answered by Anonymous
21

Correct Question:

Light of wavelength 6328 Å is incident normally on a slit having width of 0.2 mm. Width from first minima to first maxima of diffraction pattern on a screen 9m away will be:

(1) 0.36°

(2) 0.18°

(3) 0.72°

 \sf \checkmark{(4)} \ 0.09\degree

Given:

Wavelength of incident light (λ) = 6328 Å =  \sf 6328 \times 10^{-10} m

Width of slit (a) = 0.2 mm =  \sf 2 \times 10^{-4} m

Distance between screen and slit (D) = 9 m

To Find:

Width from first minima to first maxima of diffraction pattern on a screen

Answer:

For a bright point:

 \bf \theta_n = \dfrac{(2n + 1)\lambda}{2a}

 \rm For \: 1^{st} \:  bright  \: point :  \\  \rm \implies {\theta_1}_{bright} = \dfrac{(2 \times 1 + 1)\lambda}{2a} \\  \\ \rm \implies {\theta_1}_{bright} = \dfrac{3\lambda}{2a}

For a dark point:

 \bf \theta_n = \dfrac{n \lambda}{a}

 \rm For \: 1^{st} \:  dark  \: point :  \\  \rm \implies {\theta_1}_{dark} = \dfrac{1 \times \lambda}{a} \\  \\ \rm \implies {\theta_1}_{bright} = \dfrac{\lambda}{a}

Width from  \sf 1^{st} minima to  \sf 1^{st} maxima =  \rm {\theta_1}_{bright} - {\theta_1}_{dark}

 \rm \implies Width = \dfrac{3\lambda}{2a} -  \dfrac{\lambda}{a} \\  \\  \rm \implies Width = \dfrac{3\lambda - 2 \lambda}{2a}  \\  \\  \rm \implies Width = \dfrac{\lambda}{2a}  \\  \\  \rm \implies Width = \dfrac{6328 \times  {10}^{ - 10} }{2 \times 2 \times  {10}^{ - 4} }  \\  \\  \rm \implies Width = 1582 \times  {10}^{ - 6}  \: rad

In degree;

 \rm \implies Width = 1582 \times  {10}^{ - 6}   \times  \dfrac{180}{\pi}  \\  \\ \rm \implies Width = 0.09 \degree

 \therefore Width from first minima to first maxima of diffraction pattern on a screen will be 0.09°

i.e.  \boxed{\mathfrak{(4) \ 0.09 \degree}}

Similar questions