Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment
Answers
Answered by
0
Abstract
Production of energy from lignocellulosic biomass or residues is receiving ever-increasing interest. Among the different processes, dark fermentation for producing biohydrogen and anaerobic digestion for producing biomethane present considerable advantages. However, they are limited by the accessibility of holocelluloses that are embedded in the lignin network. The authors propose a review of works on the conversion of biomass into biohydrogen and biomethane with the comprehensive description of (a) biomass composition and features that may impact on its anaerobic conversion and (b) the impact of different kinds of pretreatment on these features and on the performance of biohydrogen and methane production
Production of energy from lignocellulosic biomass or residues is receiving ever-increasing interest. Among the different processes, dark fermentation for producing biohydrogen and anaerobic digestion for producing biomethane present considerable advantages. However, they are limited by the accessibility of holocelluloses that are embedded in the lignin network. The authors propose a review of works on the conversion of biomass into biohydrogen and biomethane with the comprehensive description of (a) biomass composition and features that may impact on its anaerobic conversion and (b) the impact of different kinds of pretreatment on these features and on the performance of biohydrogen and methane production
Similar questions