lim=0 (1-cosx√cos2x/x²) without l hospital rule
Answers
Answered by
0
Answer:
Let us denote limx->0 as just x->0 for easy typing.
z=x->0[(1-cosx√cos2x)/x²]
When we put zero it is of (0/0) form so apply
L-hospital rule.
z=x->0[D(1-cosx√cos2x)/D(x²)]
z=x->0[0-D(cosx√(cos2x))/(2x)]
z=x->0[cosxD(√(cos2x))+√(cos2x)D(cosx)]/(2x)
D(√cos2x)=-sin2x/√cos2x
D(√cos2x)=-sin2x.√sec2x
z=x->0[cosx[-sin2x√sec2x]-(sinx/(2x))√cos2x]
z=x->0[-sin2xcosx√sec2x]-x->0[(sinx/(2x))√cos2x]
As x->0[sinax/x]=a
x->0[cosax]=1
x->0[secax]=1
x->0[sinax]=0
z=((-0)(1)√1)-(1/2)√1
z=0–1/2
z=-1/2
Similar questions