Math, asked by vaibhavirevankar23, 4 days ago

lim 1+cos^3 θ/sin ^2 θ
θ→π
​ ​

Answers

Answered by mathdude500
6

Question :-

Evaluate

\rm \: \displaystyle\lim_{\theta \to \pi}\rm  \frac{1 +  {cos}^{3} \theta }{ {sin}^{2}\theta }  \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{\theta \to \pi}\rm  \frac{1 +  {cos}^{3} \theta }{ {sin}^{2}\theta }  \\

If we substitute directly, we get

 \rm  \:  =  \:  \dfrac{1 +  {cos}^{3} \pi }{ {sin}^{2}\pi }  \\

We know,

\boxed{\sf{  \:\rm \: cos\pi =  - 1 \: }} \:  \:  \rm \:  \: and \:  \:  \:  \: \boxed{\sf{  \:\rm \: sin\pi = 0 \: }} \\

So, on substituting these values, we get

\rm \: =  \: \dfrac{1 - 1}{0}  \\

\rm \: =  \: \dfrac{0}{0}  \\

which is indeterminant form.

So, Consider again

\rm \: \displaystyle\lim_{\theta \to \pi}\rm  \frac{1 +  {cos}^{3} \theta }{ {sin}^{2}\theta }  \\

We know,

\boxed{\sf{  \:\rm \:  {sin}^{2}x +  {cos}^{2}x = 1 \: }} \\

So, using this, we get

\rm \: =  \: \displaystyle\lim_{\theta \to \pi}\rm  \frac{1 +  {cos}^{3} \theta }{1 - {cos}^{2}\theta }  \\

We know,

\boxed{\sf{  \:\rm \:  {x}^{2} -  {y}^{2}  = (x + y)(x - y) \: }} \\

and

\boxed{\sf{  \:\rm \:  {x}^{3} +  {y}^{3}  = (x + y)( {x}^{2}  +  {y}^{2}  - xy) \: }} \\

So, using these results, we get

\rm \: =  \: \displaystyle\lim_{\theta \to \pi}\rm  \frac{ \cancel{(1 + cos\theta )} \:  \: ( {1}^{2} +  {cos}^{2}\theta   -  cos\theta  \times 1) }{ \cancel{(1 + cos\theta )} \:  \: (1 - cos\theta )}  \\

\rm \: =  \: \displaystyle\lim_{\theta \to \pi}\rm  \frac{1 +  {cos}^{2} \theta  -  cos\theta }{1 - cos\theta }  \\

\rm \: =  \: \dfrac{1 +  {( - 1)}^{2}  - ( - 1)}{1 - ( - 1)}  \\

\rm \: =  \:  \frac{1 + 1 + 1}{1 + 1}  \\

\rm \: =  \:  \dfrac{3}{2}  \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: \displaystyle\lim_{\theta \to \pi}\rm  \frac{1 +  {cos}^{3} \theta }{ {sin}^{2}\theta } =  \frac{3}{2} \:  \: }}   \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1 \: }} \\

\boxed{\sf{  \:\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1 \: }} \\

\boxed{\sf{  \:\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1 \: }} \\

\boxed{\sf{  \:\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1 \: }} \\

\boxed{\sf{  \:\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga \: }} \\


amansharma264: Excellent
mathdude500: Thank you so much
Similar questions