lim {√(1+x) - √x} Ln 1/x
Answers
Answer:
infinity
Step-by-step explanation:
sqrt(1+x)-sqrt(x)=
multiply and divide with sqrt(1+x) + sqrt x
( sqrt(1+x)-sqrt x ) × (sqrt(1+x) + sqrtx)
____________________________
sqrt(1+x) + sqrt x
1+x-x 1
= _____________ = ____________
sqrt(1+x) + sqrt x sqrt(1+x)+sqrt x
lim ln1/x ÷ sqrt(1+x)+sqrt x
x ‐> infinity
it is in form infinity /infinity
as lim lnx = - infinity
x->0
use l hospital rule
lim f(x)/g(x) = lim f'(x)/g'(x)
x->c x->c
let f(x)=ln1/x,
let g(x)=sqrt(1+x)+sqrt x
f'(x)= 1/(1/x)=x
g'(x)= 1/(2×(1+x)½) + 1/2x½
lim f'(x) = infinity
x->infinity
lim g'(x) = 0+0=0
x->infinity
lim f'(x)/g'(x) =infinity/ 0=infinity
x -> infinity
tried my best to answer, hope it is helpful