Math, asked by chanijshah, 1 month ago

lim
3
2-13 cos x-sin x
(6x-7)
2
π
X->
6
plz ans it correct step by step!​

Attachments:

Answers

Answered by mathdude500
71

Basic Identities Used :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{sin \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\blue{{\tt \: sin(x + y) = sinx \: cosy + siny \: cosx}}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\blue{{\tt \: cos(x + y) = cosx \: cosy  -  siny \: sinx}}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\blue{{\tt \: sin\dfrac{\pi}{6} = \dfrac{1}{2}  }}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\blue{{\tt \: cos\dfrac{\pi}{6} = \dfrac{ \sqrt{3} }{2}  }}}}}} \\ \end{gathered}

\green{\large\underline{\sf{Solution-}}}

\displaystyle\bf \:\lim_{x\to  \frac{\pi}{6}} \: \dfrac{2 -  \sqrt{3}cosx - sinx }{ {(6x - \pi)}^{2} }

If we put directly the value of x, we have

 \rm \:  =  \:  \dfrac{2 -  \sqrt{3}cos \frac{\pi}{6}  - sin \frac{\pi}{6}  }{ {(6 \times  \frac{\pi}{6}  - \pi)}^{2} }

 \rm \:  =  \:  \dfrac{2 -  \sqrt{3} \times \dfrac{ \sqrt{3} }{2} - \dfrac{1}{2} }{(\pi - \pi)^{2} }

 \rm \:  =  \:  \dfrac{0 }{(0)^{2} }

 \rm \:  =  \:  \dfrac{0 }{(0)}

which is indeterminant form.

So,

We solve the limit by substitution method

Consider,

\displaystyle\bf \:\lim_{x\to  \frac{\pi}{6}} \: \dfrac{2 -  \sqrt{3}cosx - sinx }{ {(6x - \pi)}^{2} }

 \red{\bf :\longmapsto\:Put \: x = \dfrac{\pi}{6} + h}

 \red{\bf :\longmapsto\:As \: x  \to \dfrac{\pi}{6} \:  \:  \: so  \:  \: \: h \to \: 0}

Given limit can be rewritten as

 =  \: \displaystyle\bf \:\lim_{h\to 0} \: \dfrac{2 -  \sqrt{3}cos\bigg(\dfrac{\pi}{6} + h\bigg) - sin\bigg(\dfrac{\pi}{6} + h\bigg) }{ { \bigg(6\bigg(\dfrac{\pi}{6} + h\bigg) - \pi \bigg)}^{2} }

\displaystyle\sf  = \:\lim_{h\to 0} \: \dfrac{2 -  \sqrt{3}\bigg(cos\frac{\pi}{6}cosh - sin \frac{\pi}{6}sinh\bigg) - \bigg(sin\frac{\pi}{6}cosh + sinhcos \frac{\pi}{6} \bigg) }{ { \bigg(6h\bigg)}^{2} }

\displaystyle\sf  = \:\lim_{h\to 0} \: \dfrac{2 -  \sqrt{3}\bigg(\frac{ \sqrt{3} }{2}cosh -\frac{1}{2}sinh\bigg) - \bigg(\frac{1}{2}cosh + sinh\frac{ \sqrt{3} }{2} \bigg) }{ { \bigg(6h\bigg)}^{2}}

\displaystyle\sf  = \:\lim_{h\to 0} \: \dfrac{2 -  \bigg(\frac{3}{2}cosh -\frac{ \sqrt{3} }{2}sinh\bigg) - \bigg(\frac{1}{2}cosh + sinh\frac{ \sqrt{3} }{2} \bigg) }{ {36h}^{2}}

\displaystyle\sf  = \:\lim_{h\to 0} \: \dfrac{2 -  \frac{3}{2}cosh  + \cancel{ \frac{ \sqrt{3} }{2}sinh} -\frac{1}{2}cosh  -  \cancel{sinh\frac{ \sqrt{3} }{2}}}{ {36h}^{2}}

\displaystyle\sf  = \:\lim_{h\to 0} \: \dfrac{2 - 2cosh}{ {36h}^{2}}

\displaystyle\sf  = \:\lim_{h\to 0} \: \dfrac{1 - cosh}{ {18h}^{2}}

\displaystyle\sf  = \:\lim_{h\to 0} \: \dfrac{2 {sin}^{2}\dfrac{h}{2}  }{ {18h}^{2}}

\displaystyle\sf  = \:\lim_{h\to 0} \: \dfrac{ {sin}\dfrac{h}{2} \times sin\dfrac{h}{2} }{ {9h}^{2}}

 \displaystyle\sf  =\dfrac{1}{9}  \:\lim_{h\to 0}\dfrac{sin\dfrac{h}{2} }{h} \times  \:\lim_{h\to 0}\dfrac{sin\dfrac{h}{2} }{h}

 \displaystyle\sf  =\dfrac{1}{9}  \:\lim_{h\to 0}\dfrac{sin\dfrac{h}{2} }{\dfrac{h}{2} \times 2} \times  \:\lim_{h\to 0}\dfrac{sin\dfrac{h}{2} }{\dfrac{h}{2} \times 2 }

 \rm \:  =  \: \dfrac{1}{9}  \times \dfrac{1}{2}  \times \dfrac{1}{2}

 \rm \:  =  \: \dfrac{1}{36}

Additional Information :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{tan \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{log(1 \:  +  \: x)}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {e}^{x} - 1 }{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {a}^{x} - 1 }{x} \:  =  \:  log(a) }}}}}} \\ \end{gathered}

Answered by amansharma264
82

EXPLANATION.

\sf \implies \displaystyle  \lim_{x \to \frac{\pi}{6} } \bigg[\dfrac{2 - \sqrt{3}cosx - sinx }{(6x - \pi)^{2} } \bigg].

As we know that,

First we put the value of x = π/6 in equation and check their indeterminant form, we get.

\sf \implies \displaystyle  \lim_{x \to \frac{\pi}{6} } \bigg[\dfrac{2 - \sqrt{3}  cos  \times  \dfrac{\pi}{6}  - sin \times \dfrac{\pi}{6} }{(6 \times \dfrac{\pi}{6} - \pi)^{2}  } \bigg].

\sf \implies \displaystyle  \lim_{x \to \frac{\pi}{6} }  \bigg[ \dfrac{2 - \sqrt{3} \times cos30 \degree - sin 30 \degree }{(\pi - \pi)^{2} } \bigg]

\sf \implies \displaystyle  \lim_{x \to \frac{\pi}{6} }  \bigg[\dfrac{2 - \sqrt{3} \times \dfrac{\sqrt{3} }{2} - \dfrac{1}{2}  }{(\pi - \pi)^{2} } \bigg].

\sf \implies \displaystyle  \lim_{x \to \frac{\pi}{6} }  \bigg[ \dfrac{2 - \dfrac{3}{2} - \dfrac{1}{2}  }{(\pi - \pi)^{2} } \bigg] = \dfrac{0}{0}

As we can see that,

It is in the form of 0/0 indeterminant.

Now, we can apply L-HOSPITAL'S RULE, we get.

\sf \implies \displaystyle  \lim_{x \to \frac{\pi}{6} }  \bigg[\dfrac{\dfrac{d(2)}{dx} - \dfrac{d(\sqrt{3} cosx)}{dx}  - \dfrac{d(sinx)}{dx} }{\bigg(\dfrac{d(6x)}{dx} - \dfrac{d(\pi)}{dx} \bigg)^{2}  } \bigg].

\sf \implies \displaystyle  \lim_{x \to \frac{\pi}{6} }  \bigg[\dfrac{\sqrt{3} sinx - cosx}{2 (6x - \pi) \times 6} \bigg]

\sf \implies \displaystyle  \lim_{x \to \frac{\pi}{6} }  \bigg[ \dfrac{\sqrt{3} sinx - cosx }{12(6x - \pi)} \bigg].

Now, we can again apply L-HOSPITAL'S RULE, we get.

\sf \implies \displaystyle  \lim_{x \to \frac{\pi}{6} }  \bigg[\dfrac{\sqrt{3}cosx + sinx }{72} \bigg].

Put the value of x = π/6 in equation, we get.

\sf \implies \displaystyle  \lim_{x \to \frac{\pi}{6} }  \bigg[ \dfrac{\sqrt{3} \times cos \times \dfrac{\pi}{6}  + sin \times \dfrac{\pi}{6}  }{72} \bigg].

\sf \implies \displaystyle  \lim_{x \to \frac{\pi}{6} }  \bigg[ \dfrac{\sqrt{3} \times \dfrac{\sqrt{3} }{2} + \dfrac{1}{2} }{72} \bigg].

\sf \implies \displaystyle  \lim_{x \to \frac{\pi}{6} }  \bigg[\dfrac{\dfrac{3}{2} + \dfrac{1}{2} }{72} \bigg]. = \dfrac{1}{36}

\sf \implies \displaystyle  \lim_{x \to \frac{\pi}{6} } \bigg[\dfrac{2 - \sqrt{3}cosx - sinx }{(6x - \pi)^{2} } \bigg]. = \dfrac{1}{36}

                                                                                                                             

MORE INFORMATION.

\sf \implies (1)= \displaystyle  \lim_{x \to \infty} \bigg( 1 + \dfrac{a}{x} \bigg)^{x} =  \lim_{x \to 0} ( 1 + ax)^{1/x} = e^{a}

\sf \implies(2) = \displaystyle  \lim_{x \to 0}  \dfrac{a^{x} - 1}{x} = log_{e}a (a>0)

\sf \implies (3) =\displaystyle  \lim_{x \to0}  = \dfrac{e^{x} - 1}{x} = 1

\sf \implies(4) = \displaystyle  \lim_{x \to a}  \dfrac{x^{n} - a^{n} }{x - a} = n a^{n - 1}

\sf \implies (5) = \displaystyle  \lim_{x \to 0} \dfrac{log(1 + x)}{x} = 1.

\sf \implies (6) = \displaystyle  \lim_{x \to 0} \dfrac{(1 + x)^{n} - 1}{x} = n

\sf \implies(7) =  \displaystyle  \lim_{x \to \infty} \dfrac{sinx}{x} =  \lim_{n \to \infty} \dfrac{cosx}{x} = 0.

\sf \implies(8) = \displaystyle  \lim_{x \to \infty} \dfrac{sin(1/x)}{(1/x)} = 1.

Similar questions