Math, asked by Nishant4439, 2 days ago

lim 3-t t->3 / √t+1-√5t-11

Answers

Answered by mathdude500
4

Appropriate Question :- Solve

\rm \: \displaystyle\lim_{t \to 3}\sf   \frac{3 - t}{ \sqrt{t + 1} -  \sqrt{5t - 11} }  \:  \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{t \to 3}\sf    \: \frac{3 - t}{ \sqrt{t + 1} -  \sqrt{5t - 11} }  \:  \\

On substitute directly t = 3, we get

\rm \: = \sf    \: \frac{3 - 3}{ \sqrt{3 + 1} -  \sqrt{15 - 11} }  \:  \\

\rm \: = \sf    \: \frac{0}{ \sqrt{4} -  \sqrt{4} }  \:  \\

\rm \: = \sf    \: \frac{0}{0}  \:  \\

which is indeterminant form.

Consider,

\rm \: \displaystyle\lim_{t \to 3}\sf    \: \frac{3 - t}{ \sqrt{t + 1} -  \sqrt{5t - 11} }  \:  \\

On rationalizing the denominator, we get

\rm \:  =  \: \displaystyle\lim_{t \to 3}\sf    \: \frac{3 - t}{ \sqrt{t + 1} -  \sqrt{5t - 11} } \times  \frac{\sqrt{t + 1}  + \sqrt{5t - 11} }{\sqrt{t + 1} + \sqrt{5t - 11} } \:  \\

\rm \:  =  \: \displaystyle\lim_{t \to 3}\sf    \: \frac{(3 - t)\bigg(\sqrt{t + 1} + \sqrt{5t - 11} \bigg)}{(\sqrt{t + 1})^{2}  -  (\sqrt{5t - 11})^{2}  } \\

\rm \:  =  \: \displaystyle\lim_{t \to 3}\sf    \:[\sqrt{t + 1} + \sqrt{5t - 11}] \times \displaystyle\lim_{t \to 3}\sf    \: \frac{3 - t}{t + 1 - 5t + 11} \\

\rm \: =\sf    \:[\sqrt{3+ 1} + \sqrt{15 - 11}] \times \displaystyle\lim_{t \to 3}\sf    \: \frac{3 - t}{12 - 4t} \\

\rm \: =\sf    \:[\sqrt{4} + \sqrt{4}] \times \displaystyle\lim_{t \to 3}\sf    \: \frac{3 - t}{4(3 - t)} \\

\rm \: =\sf    \:[2 + 2]\times  \frac{1}{4}  \\

\rm \: =\sf\:4\times  \frac{1}{4}  \\

\rm \: =\sf\:1  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \displaystyle\lim_{t \to 3}\sf   \frac{3 - t}{ \sqrt{t + 1} -  \sqrt{5t - 11} }   = 1\:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{sinx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{tanx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{log(1 + x)}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {e}^{x}  - 1}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {a}^{x}  - 1}{x} = loga}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions