Math, asked by ayanali411414, 3 months ago

lim Cos2x-1
x--->0 ------------
Cosx-1 ​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

  \sf \:\:  \:  \: \displaystyle\sf \:\lim_{x\to 0} \: \dfrac{cos2x - 1}{cosx - 1}

  =  \:  \:  \:  \displaystyle\sf \:\lim_{x\to 0}\dfrac{1 - cos2x}{1 - cosx}

 \sf \:  =  \:  \:  \: \dfrac{1 - cos0}{1 - cos0}

 \sf \:  =  \:  \:  \: \dfrac{1 - 1}{1 - 1}

 \sf \:  =  \:  \:  \: \dfrac{0}{0}

which is indeterminant form.

Hence,

To solve this limit, we break down the formula,

 \boxed{ \sf\ \: 1 - cosx = 2 {sin}^{2}\dfrac{x}{2}} \: and \:  \boxed{ \sf \: 1 - cos2x = 2 {sin}^{2} x}

So,

   \:  \:  \:  \displaystyle\sf \:\lim_{x\to 0}\dfrac{1 - cos2x}{1 - cosx}

  =  \:  \:  \:  \displaystyle\sf \:\lim_{x\to 0}\dfrac{ \cancel2 \:  {sin}^{2}x }{ \cancel2  \: {sin}^{2}\dfrac{x}{2} }

  =  \:  \:  \:  \displaystyle\sf \:\lim_{x\to 0}\dfrac{sinx \: sinx}{sin\dfrac{x}{2} \: sin\dfrac{x}{2}}

  =  \:  \:  \:  \displaystyle\sf \:\lim_{x\to 0}\dfrac{\bigg(2 \:  \cancel{sin\dfrac{x}{2}} \: cos\dfrac{x}{2} \bigg) \bigg(2 \:  \cancel{sin\dfrac{x}{2}} \: cos\dfrac{x}{2} \bigg) }{ \cancel{sin\dfrac{x}{2}} \:  \:  \cancel{sin\dfrac{x}{2}}}

  =  \:  \:  \:  4 \times \displaystyle\sf \:\lim_{x\to 0}cos\dfrac{x}{2} \:  \times  \: \:  \:  \:  \displaystyle\sf \:\lim_{x\to 0}cos\dfrac{x}{2}

 \sf \:  =  \:  \:  \: 4 \times 1 \times 1

 \sf \:  =  \:  \:  \: 4

Additional Information :-

 \:  \:  \:  \displaystyle\sf \:\lim_{x\to 0}\dfrac{sinx}{x}  = 1

 \:  \:  \:  \displaystyle\sf \:\lim_{x\to 0}\dfrac{tanx}{x}  = 1

 \:  \:  \:  \displaystyle\sf \:\lim_{x\to 0}\dfrac{ {e}^{x}  - 1}{x}  = 1

 \:  \:  \:  \displaystyle\sf \:\lim_{x\to 0}\dfrac{ log(1 + x) }{x}  = 1

 \:  \:  \:  \displaystyle\sf \:\lim_{x\to 0}\dfrac{ {a}^{x}  - 1}{x}  =  {a}^{x}  log(a)

Similar questions