lim->0 1/x-3 + 9x/27-x^3
Attachments:
Answers
Answered by
2
Solution :
16 ) [tex] \lim_{x \to 3} [ \frac{1}{x-3} + \frac{9x}{27-x^3} ] \\ = \lim_{x \to 3} [ \frac{x^2 +3x+9}{x^3-27} + \frac{9x}{27-x^3} ] \\ = \lim_{x \to 3} [ \frac{9x-x^2 -3x-9}{27-x^3} ] \\ = \lim_{x \to 3} [ \frac{(x-3)^2}{(x-3)(x^2 + 3x+9)} ] \\ = \lim_{x \to 3} [ \frac{x-3}{(x^2 + 3x+9} ] = 0[/tex]
Hope it helps !
16 ) [tex] \lim_{x \to 3} [ \frac{1}{x-3} + \frac{9x}{27-x^3} ] \\ = \lim_{x \to 3} [ \frac{x^2 +3x+9}{x^3-27} + \frac{9x}{27-x^3} ] \\ = \lim_{x \to 3} [ \frac{9x-x^2 -3x-9}{27-x^3} ] \\ = \lim_{x \to 3} [ \frac{(x-3)^2}{(x-3)(x^2 + 3x+9)} ] \\ = \lim_{x \to 3} [ \frac{x-3}{(x^2 + 3x+9} ] = 0[/tex]
Hope it helps !
asher2909p6mfl3:
thank you so much
Similar questions