Math, asked by asher2909p6mfl3, 1 year ago

lim->0 1/x-3 + 9x/27-x^3

Attachments:

Answers

Answered by Yuichiro13
2
Solution :

16 ) [tex] \lim_{x \to 3} [ \frac{1}{x-3} + \frac{9x}{27-x^3} ] \\ = \lim_{x \to 3} [ \frac{x^2 +3x+9}{x^3-27} + \frac{9x}{27-x^3} ] \\ = \lim_{x \to 3} [ \frac{9x-x^2 -3x-9}{27-x^3} ] \\ = \lim_{x \to 3} [ \frac{(x-3)^2}{(x-3)(x^2 + 3x+9)} ] \\ = \lim_{x \to 3} [ \frac{x-3}{(x^2 + 3x+9} ] = 0[/tex]

Hope it helps !

asher2909p6mfl3: thank you so much
Similar questions