Math, asked by Anonymous, 1 month ago

Lim -> 2 x^2-6x+8/x^3-8

Please answer this question

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:\displaystyle\lim_{x \to 2} \frac{ {x}^{2}  - 6x + 8}{ {x}^{3}  - 8}

If we substitute directly x = 2, we get

\rm \:  =  \:\dfrac{ {2}^{2}  - 2 \times 6 + 8}{ {2}^{3}  - 8}

\rm \:  =  \:\dfrac{4 - 12 + 8}{8 - 8}

\rm \:  =  \:\dfrac{0}{0}

which is indeterminant form.

So, to evaluate this

\rm :\longmapsto\:\displaystyle\lim_{x \to 2} \frac{ {x}^{2}  - 6x + 8}{ {x}^{3}  - 8}

We use Method of Factorization.

\rm \:  =  \:\displaystyle\lim_{x \to 2} \frac{ {x}^{2} - 4x - 2x + 8 }{ {x}^{3}  -  {2}^{3} }

We know,

\boxed{ \tt{ \:  {x}^{3} -  {y}^{3} = (x - y)( {x}^{2} + xy +  {y}^{2}) \: }}

So, using this identity, we get

\rm \:  =  \:\dfrac{x(x - 4) - 2(x - 4)}{(x - 2)( {x}^{2}  + 2x + 4)}

\rm \:  =\displaystyle\lim_{x \to 2}  \:\dfrac{(x - 4) \:  \cancel{(x - 2)}}{ \cancel{(x - 2)} \:  \: ( {x}^{2}  + 2x + 4)}

\rm \:  =  \:\displaystyle\lim_{x \to 2} \frac{x - 4}{ {x}^{2} + 2x + 4 }

\rm \:  =  \:\dfrac{2 - 4}{4 + 4 + 4}

\rm \:  =  \:\dfrac{ - 2}{4 + 4 + 4}

\rm \:  =  \:\dfrac{ - 2}{12}

\rm \:  =  \:\dfrac{ - 1}{6}

Thus,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 2} \frac{ {x}^{2}  - 6x + 8}{ {x}^{3}  - 8} =  -  \frac{1}{6}  \: }}}

More to know

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{sinx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{tanx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ log(1 + x) }{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{  {e}^{x}   - 1}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{  {a}^{x}   - 1}{x} = loga \: }}

Similar questions