Math, asked by mahekv17, 4 months ago

lim n → ∞ (1^2+2^2+...+n^2)/4n^3+6n^2-5n+1

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \lim _{n \rarr \infty } \frac{ {1}^{2}  +  {2}^{2} +  {3}^{2} + ... +  {n}^{2}   }{4 {n}^{3} + 6 {n}^{2}  - 5n + 1 }  \\

 = \lim _{n \rarr \infty } \frac{ \frac{n(n + 1)(2n + 1)}{6} }{4 {n}^{3} + 6 {n}^{2} - 5n + 1  }  \\

 =  \frac{1}{6} \lim _{n \rarr \infty } \frac{( {n}^{2}  + n)(2n + 1)}{4 {n}^{3} + 6 {n}^{2}  - 5n  + 1}  \\

 =  \frac{1}{6} \lim _{n \rarr \infty } \frac{2 {n}^{3}  + 3 {n}^{2}  + n}{4 {n}^{3} + 6 {n}^{2}  - 5n + 1 }  \\

 =  \frac{1}{6} \lim _{n \rarr \infty } \frac{ {n}^{3} (2 +  \frac{3}{n} +  \frac{1}{ {n}^{2} }  )}{ {n}^{3} (4 +  \frac{6}{n} -  \frac{5}{ {n}^{2} }  +  \frac{1}{ {n}^{3} })  }  \\

 =  \frac{1}{6} \lim _{n \rarr \infty } \frac{ (2 +  \frac{3}{n} +  \frac{1}{ {n}^{2} }  )}{  (4 +  \frac{6}{n} -  \frac{5}{ {n}^{2} }  +  \frac{1}{ {n}^{3} })  }  \\

 =  \frac{1}{6}  \times  \frac{2 + 0 + 0}{4 + 0  -  0 + 0}  \\

 =  \frac{1}{6}  \times  \frac{1}{2}  \\

 =  \frac{1}{12}  \\

Similar questions