Math, asked by paridhigupta1234, 1 year ago

lim [{ (n+1)(n+2)..................3n }/n^2n] ^1/n equal to
n⇒∞

Answers

Answered by enrique
3
Hello pari :-) 

let I = >  lim  { [{ (n+1)(n+2)..................3n }/n^2n] }       
              n => ∞

     I = >      lim  { [{ (n+1)(n+2)..................( n+2n) }/n^2n] }       
                  n => ∞
          
      I = > lim { [{ ((n+1)/n) ((n+2)/n)..................(( n+2n)/n) }] } ^1/n
               n =>∞
   
       taking log both sides we get 
  
 log(I) = >   lim  Log { ((n+1)/n) ((n+2)/n)..................(( n+2n)/n) }]  ^1/n
                  n=> ∞

log (I) = >  lim (1/n) [ log { ( 1+ 1/n) + log (1+2/n) + ..........................log(1+2n/n) ]
                  n=>∞ 
we get its general term 


                               2n
log(I) = > lim (1/n)    ∑   log( 1+ r/n)
                n=>∞      r=1     
                  
                   2
log (I)  = >   ∫  log (1+x)dx 
                   0
                                                        2
log(I) = > [ log (1+x).x - ∫1xdx/(1+x) ]
                                                        0 
                                2     2
log(I) = > [log(1+x).x]   - ∫     (1- 1/(1+x) ) dx   
                                0     0     
                                             2
log(I) = > 2.log3 - [x-log|1+x|] 
                                             0 

log(I) = > 2log3 - 2 + log3 we get = >  3log3 -2 which equals to log27-2

log(I) =>  log27-2 

I = > e ^( log27-2) we get 27 e^-2  = >  27 /e^2   +c is our required answer ! 

Hopes this helps you 

@ engineer gopal khandewal 

paridhigupta1234: thnx a lot i cant believe this a question of integrals i thought it was a question from limits thnx a lot gopal
enrique: np pari :-)
Similar questions