Math, asked by rk2251577, 1 month ago

lim(r? -9) 3 lim 2x = 6 4 EXERCISE 4 TH Find the values of following​

Attachments:

Answers

Answered by TrustedAnswerer19
56

Answer:

see the attachment please

Given,

  \displaystyle\lim_{x \to  2 } \:  \frac{ {x}^{2}  - 4}{x - 2}  \\   \\  =  \displaystyle\lim_{x \to  2 }  \frac{ {x}^{2}  -  {2}^{2} }{x - 2}  \\  \\  \pink{ \bf \: we \: know \: that} \\  \\  \orange{ \boxed { \dag \: \displaystyle\lim_{x \to  a} \frac{ {x}^{n} -  {a}^{n}  }{x - n}  = n . {a}^{n - 1} }} \\  \\  \sf \: so \: by \: comparing \:  \: we \: will \: get \:  \:   \\ \sf a = 2 \:  \:  \: and \: n = 2 \\  \\  \bf \: therefore \:  \\  = 2 \times {2}^{2 - 1}  \\  = 2 \times 2 \\  = 4

Attachments:
Similar questions