Math, asked by poojadhari151, 20 hours ago

lim (Sin(pi -x)) / (pi-x) x-> pi

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to \pi}\sf \frac{sin(\pi - x)}{\pi - x}

If we substitute directly the value of x, we get

\rm \:  =  \: \dfrac{sin(\pi - \pi)}{\pi - \pi}

\rm \:  =  \: \dfrac{sin0}{0}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

So, to solve this question, we use Method of Substitution

\rm :\longmapsto\:\displaystyle\lim_{x \to \pi}\sf \frac{sin(\pi - x)}{\pi - x}

Now, Substitute

\red{\rm :\longmapsto\:x = \pi - y, \:  \: as\: x \to \: \pi, \: so \: y \:  \to \: 0 \: }

So, above expression can be rewritten as

\rm \:  =  \: \displaystyle\lim_{y \to 0}\sf \frac{sin(\pi - \pi + y)}{\pi - \pi + y}

\rm \:  =  \: \displaystyle\lim_{y \to 0}\sf \frac{siny}{y}

\rm \:  =  \: 1

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to \pi}\sf \frac{sin(\pi - x)}{\pi - x}  = 1 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Alternative Method

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to \pi}\sf \frac{sin(\pi - x)}{\pi - x}

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{\pi - x \to 0}\sf \frac{sin(\pi - x)}{\pi - x}

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{sinx}{x} = 1 \: }}}

So, using this

\rm \:  =  \: 1

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to \pi}\sf \frac{sin(\pi - x)}{\pi - x}  = 1 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{ \tt{ \:\displaystyle\lim_{x \to 0}\sf \frac{sinx}{x} = 1 \: }}

\boxed{ \tt{ \:\displaystyle\lim_{x \to 0}\sf \frac{tanx}{x} = 1 \: }}

\boxed{ \tt{ \:\displaystyle\lim_{x \to 0}\sf \frac{log(1 + x)}{x} = 1 \: }}

\boxed{ \tt{ \:\displaystyle\lim_{x \to 0}\sf \frac{ {e}^{x}  - 1}{x} = 1 \: }}

\boxed{ \tt{ \:\displaystyle\lim_{x \to 0}\sf \frac{ {a}^{x}  - 1}{x} = loga \: }}

Similar questions