Math, asked by dakshdua0342, 2 months ago

lim x-0 (1+2x)^{(x+3)/x}


NO SPAM❌❌​

Answers

Answered by LaeeqAhmed
2

lim  (x \rightarrow0) \:  \:  {(1 + 2x)}^{ \frac{(x + 3)}{x} }

lim  (x \rightarrow0) \:  \:  {(1 + 2x)}^{ (\frac{x }{x} +  \frac{3}{x} )  }

lim  (x \rightarrow0) \:  \:  {(1 + 2x)}^{ (1+  \frac{3}{x} )  }

 \tt it \: is \: in \: the \: form :

 \bf  \blue { \boxed{{a}^{b + c}  =  {a}^{b}  +  {a}^{c} }}

lim  (x \rightarrow0) \:  \:  {(1 + 2x)}^{ 1   }  + {(1 + 2x)}^{   \frac{3}{x}   }

lim  (x \rightarrow0) \:  \:  {(1 + 2x)} + {(1 + 2x)}^{   \frac{3}{x}   } ....(1)

 \tt now \: consider :

 {(1 + 2x)}^{ \frac{3}{x} }

lim  (x \rightarrow0) \:  \:  {(1 + 2x)}^{   \frac{3}{x}   }

 \tt applying \:  \:  \:  \purple{ log() } :

lim  (x \rightarrow0) \:  \:   log {(1 + 2x)}^{   \frac{3}{x}   }

lim  (x \rightarrow0) \:  \:   \frac{3}{x}  log (1 + 2x)

lim  (x \rightarrow0) \:  \:     \frac {3 \: log (1 + 2x)}{x}

 \tt  now  \: \purple{difrrentiating} \: both \: numerator\\ \tt and \: denominator:

lim  (x \rightarrow0) \:  \:      \frac { \frac{d}{dx} 3 \: log (1 + 2x)}{ \frac{d}{dx} x}

 \tt  we \: know \: that  :

 \blue{  \boxed{\frac{d}{dx}  log(a)  =  \frac{1}{a} }}

lim  (x \rightarrow0) \:  \:      \frac { \frac{1}{1 + 2x}}{ 1}

lim  (x \rightarrow0) \:  \:       \frac{1}{1 + 2x}

lim  (x \rightarrow0) \:  \:       \frac{1}{1 + 2(0)}

 \therefore lim  (x \rightarrow0) \:  {(1 + 2x)}^{ \frac{3}{x} }   =      1

 \tt substituting \: it \: in \: (1)

lim  (x \rightarrow0) \:  \:  {(1 + 2x)} + {(1 + 2x)}^{   \frac{3}{x}   }

lim  (x \rightarrow0) \:  \:  {(1 + 2(0))} +1

  \orange{ \boxed{\therefore \: lim  (x \rightarrow0) \:  \:  {(1 + 2x)}^{ \frac{(x + 3)}{x} }  = 2}}

HOPE THIS HELPS!!

Similar questions