Math, asked by kushpatelco20d2, 7 months ago

lim x → 0 (1/x)^2sinx​

Answers

Answered by mbakshi37
1

Answer: doesnt exits

.= lim x → 0 (1/x)^2sinx​=

Step-by-step explanation:

.= lim x → 0 (1/x)^2sinx​

.= lim x → 0 (1/x)sinx​.* lim x → 0 (1/x)

.=1. Indeterminate.  = Does not exit.

using Lhospital

.= lim x → 0 (1/x)^2sinx​= .

= lim x → 0 cos x/ 2x

doesnt exit !

Answered by Syamkumarr
0

Answer:

\lim_{x \to 0} \frac{1}{x^{2}} sin x =

Step-by-step explanation:

We need to find \lim_{x \to 0} \frac{1}{x^{2}} sin x

= > \lim_{x \to 0} \frac{ sin x}{x^{2}}

=> \lim_{x \to 0} \frac{ sin x}{x} * \frac{1}{x}

=>  \lim_{x \to 0} (\frac{ sin x}{x} * \frac{1}{x})

On separating the limits,

=> \lim_{x \to 0} (\frac{ sin x}{x}) * \lim_{x \to 0}(\frac{1}{x})

We know that \lim_{x \to 0} \frac{ sin x}{x} = 1

=> 1 * \lim_{x \to 0} \frac{1}{x}

=>  \lim_{x \to 0} \frac{1}{x}

Applying the limit to the function.

=> \frac{1}{0}

=> ∞

Similar questions