Math, asked by kiyanshukumar, 5 months ago

lim x=0. cos^2 /1-sinx​

Answers

Answered by PharohX
3

Answer:

SOLUTION :-

GIVEN :-

 \sf \lim_{x \to \: 0 } \bigg( \frac{ \cos ^{2} (x) }{1 -  \sin(x) }  \bigg) \\

 \sf \: Using \:  \:  the  \:  \: formula -

 \blue{ \sf \:  \cos^{2} (x)  = 1 -  \sin^{2} (x) }

 \sf \lim_{x \to \: 0 } \bigg( \frac{1 -   \sin^{2} (x) }{1 -  \sin(x) }  \bigg) \\

 \sf \: Now \:  use  \: another \:  formula -

 \sf \blue{ \sf  \: ( {x}^{2}  -  {y}^{2} ) = (x + y)(x - y)}

 =  \sf \lim_{x \to \: 0 } \bigg( \frac{ {1}^{2}  -   \sin^{2} (x) }{1 -  \sin(x) }  \bigg) \\

 =  \sf \lim_{x \to \: 0 } \bigg( \frac{ (1  -   \sin(x) )(1 +  \sin(x)) }{(1 -  \sin(x)) }  \bigg) \\

 =  \sf \lim_{x \to \: 0 } \bigg( \frac{ \cancel{ (1  -   \sin(x) })(1 +  \sin(x)) }{ \cancel{(1 -  \sin(x)) }}  \bigg) \\

 = \sf \lim_{x \to \: 0 } \: (1 +  \sin(x) )

 \sf \: Now  \: putting  \: the \:  limits

 =  \sf \: 1 +  \sin(0)

 =  \sf \: 1 + 0

 \sf \:  = 1

Similar questions