Math, asked by debarghya4632, 7 months ago

lim x → 0 (e^x-1)/2x​

Answers

Answered by Anonymous
2

lim x → 0 (e^x - 1 ) / 2x

Dividing numerator and denominator by x

lim x → 0 [(e^x - 1)/x] / 2x/x

As per logrithmic limit : lim x → 0 (e^x - 1)/x = 1

= 1/2 is Answer.

Answered by Asterinn
4

 \implies\displaystyle \sf \lim \limits_{x \to \: 0} \:  \frac{ {e}^{x} - 1 }{2x}

Now put x = 0 in the above expression.

 \bf  \dfrac{ {e}^{0} - 1 }{2 \times 0}

 \bf  \dfrac{ {0}}{ 0}

Therefore we get 0/0 form. So we can apply L'Hospital's rule to solve given problem.

In L'Hospital's rule we differentiate numerator and denominator seperately.

 \implies\displaystyle \sf \lim \limits_{x \to \: 0} \:  \dfrac{  \dfrac{d({e}^{x} - 1)}{dx}  }{ \dfrac{d(2x)}{dx} }

We know that :-

 \boxed{ \bf\dfrac{d({e}^{t} )}{dt} = {e}^{t}}

\boxed{ \bf\dfrac{d(c)}{dt} = 0}  \bf  \: where \: c \: is \: constant

Therefore :-

 \bf \: \dfrac{d({e}^{x} - 1)}{dx} =  {e}^{x}

We also know that :-

 \boxed{ \bf\dfrac{d({x}^{t} )}{dt} = t \: {x}^{t - 1}}

Therefore :-

 \bf \: \dfrac{d(2x)}{dx}  = 2

so we finally get :-

 \implies\displaystyle \sf \lim \limits_{x \to \: 0} \:  \dfrac{  {{e}^{x} }  }{2}

Now put x = 0

\implies\displaystyle \sf \lim \limits_{x \to \: 0} \:  \dfrac{  {{e}^{0} }  }{2}

\implies\displaystyle \sf  \dfrac{1}{2}

Answer :

\displaystyle \sf \lim \limits_{x \to \: 0} \:  \frac{ {e}^{x} - 1 }{2x}  =  \dfrac{1}{2}

Similar questions