Math, asked by ribikanaik6074, 1 month ago

Lim x=0 log(3+x)-log(3-x)/x=K

Answers

Answered by mathdude500
2

Appropriate Question :-

☆ Find the value of k if

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \bf \: \dfrac{ log(3 + x)  -  log(3 - x) }{x} = k

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{ log(3 + x)  -  log(3 - x) }{x} = k

If we substitute directly x = 0, we get indeterminant form.

Consider,

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{ log(3 + x)  -  log(3 - x) }{x} = k

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{ log\bigg(\dfrac{3 + x}{3 - x}  \bigg)  }{x} = k

 \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: log(x) -  log(y) =  log( \dfrac{x}{y} )\bigg \}}

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{ log\bigg(\dfrac{3 + x}{3 - x}  \bigg)  }{x} = k

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{ log\bigg(1 + \dfrac{3 + x}{3 - x}   - 1\bigg)  }{x} = k

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{ log\bigg(1 + \dfrac{3 + x  - 3 + x}{3 - x} \bigg)  }{x} = k

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{ log\bigg(1 + \dfrac{2x}{3 - x} \bigg)  }{x} = k

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{ log\bigg(1 + \dfrac{2x}{3 - x} \bigg)  }{\dfrac{2}{3 - x}  \times x \times \dfrac{3 - x}{2} } = k

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{ log\bigg(1 + \dfrac{2x}{3 - x} \bigg)}{\dfrac{2x}{3 - x} } \times  \dfrac{2}{3 - x}  = k

 \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{ log(1 + x) }{x}  = 1 \bigg \}}

\bf\implies \:k = \dfrac{2}{3}

Additional Information :-

\boxed{ \sf \: \rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{ log(1 + x) }{x}  = 1}

\boxed{ \sf \: \rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{sinx }{x}  = 1}

\boxed{ \sf \: \rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{tanx }{x}  = 1}

\boxed{ \sf \: \rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{ {sin}^{ - 1} x }{x}  = 1}

\boxed{ \sf \: \rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{ {tan}^{ - 1} x }{x}  = 1}

\boxed{ \sf \: \rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{ {e}^{x}  - 1 }{x}  = 1}

\boxed{ \sf \: \rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{ {a}^{x}  - 1 }{x}  = loga}

Similar questions