Math, asked by nihal3278, 10 months ago

Lim x - 0 sin squar 4x / x squar

Answers

Answered by Sharad001
88

Question :-

 \to \: \lim_{x \to 0 } \rm \frac{ { \sin}^{2} 4x}{ {x}^{2} }  \\

Answer :-

\to \boxed{ \lim_{x \to 0 } \rm \frac{ { \sin}^{2} 4x}{ {x}^{2} } \:  = 16}  \\ \:

Solution :-

We have ,

 \to \: \lim_{x \to 0 } \rm \frac{ { \sin} ^{2} 4x}{ {x}^{2} }  \\  \:  \\  \rm we \: can \: write \: it \:  \\  \\  \to \: \lim_{x \to 0 } \rm \frac{ { \sin} 4x}{ {x} } \:  \times  \frac{ \sin4x}{x}   \\  \:   \\ \to \:\lim_{x \to 0 } \rm \frac{ { \sin} 4x}{ {x} } \:. \lim_{x \to 0 } \rm \frac{ { \sin} 4x}{ {x} } \: \:   \\ \\ \rm multiply \: and \: divided \: by \: 4 \\  \\  \to \: \bigg( \lim_{x \to 0 } \rm \frac{ { \sin} 4x}{ {x} }  \:  \times  \frac{4}{4} \bigg)  \bigg(  \lim_{x \to 0 } \rm \frac{ { \sin} 4x}{ {x} } \: \times  \frac{4}{4} \bigg) \\  \\  \to \bigg( 4\:  \: \lim_{x \to 0 } \rm \frac{ { \sin} 4x}{ {4x} }  \bigg) \bigg( 4\:  \: \lim_{x \to 0 } \rm \frac{ { \sin} 4x}{ {4x} }  \bigg) \: \\  \\  \because \: \: \lim_{ } \rm \frac{ { \sin} h}{ {h} }  = 1 \\  \\  \to \: 4 \:  \times 4 \\  \\  \to \: 16 \\ \to \boxed{ \lim_{x \to 0 } \rm \frac{ { \sin}^{2} 4x}{ {x}^{2} } \:  = 16}  \\

Similar questions