Math, asked by pspooja4pd5k68, 1 year ago

lim x→0 (sin x/x)^(1/x^2) by l hospital​

Answers

Answered by IamIronMan0
2

Answer:

 \frac{1}{ {e}^{6} }

Step-by-step explanation:

First take log

 \lim_{x \to \: 0} {e}^{ log( { (\frac{ \sin(x) }{x} )}^{ \frac{1}{ {x}^{2} } } ) }  \\  = \lim_{x \to \: 0} {e}^{  \frac{1}{ {x}^{2} } log{ (\frac{ \sin(x) }{x} )}}

Now use L hopital

 \lim_{x \to \: 0} {e}^{ \frac{1}{ \frac {\sin(x) }{x} } \frac{x \cos(x)  -  \sin(x) }{ {x}^{2} } . \frac{1}{2x} }

\lim_{x \to \: 0} {e}^{ { (\frac{x \cot(x) - 1 }{2 {x}^{2} } )}}

You can use series expansion of cot x to finish it now or use two times more l hospital rule choice is yours

 \cot(x)  =  \frac{1}{x}  -  \frac{x}{3}  -  \frac{ {x}^{3} }{45} ...

\lim_{x \to \: 0} {e}^{{ (\frac{ x( \frac{1}{x} -  \frac{x}{3}  +   \frac{ {x}^{3} }{45} ..) - 1   }{2 {x}^{2} } )}}

\lim_{x \to \: 0} {e}^{{ (\frac{ 1 -  \frac{ {x}^{2} }{3}  +   \frac{ {x}^{4} }{45} .. - 1   }{2 {x}^{2} } )}}

\lim_{x \to \: 0} {e}^{{  ( -  \frac{1}{6} +   \frac{ {x}^{3}  }{90} ..)   }{}} =  {e}^{ -  \frac{1}{6} }  =  \frac{1}{ {e}^{6} }

Similar questions