Math, asked by monami79, 7 months ago

lim x-0 tanx - sinx / 1-cosx

Answers

Answered by Asterinn
8

\displaystyle \sf \lim \limits_{x \to \: 0} \: \dfrac{tan\: x - sin\:x}{1 - cos\:x}

 \sf put \:  x = 0 \: in \: \dfrac{tan\: x - sin\:x}{1 - cos\:x}

 \implies \sf \: \dfrac{tan\: 0\degree - sin\:0\degree}{1 - cos\:0 \degree}

We know that :-

\underline{\boxed{\bf \tan(0)   = 0 }}

\underline{\boxed{\bf \sin(0)   = 0 }}

\underline{\boxed{\bf \cos(0)   = 1 }}

 \implies \sf \: \dfrac{ 0 - 0}{1 - 1}

 \implies \sf \: \dfrac{ 0}{0}

Therefore we get 0/0 form. Now we will simply the given expression.

We know that :-

\underline{\boxed{\bf \tan(t)   =  \frac{ \sin(t) }{ \cos(t) }  }}

 \implies\displaystyle \sf \lim \limits_{x \to \: 0} \: \dfrac{ \dfrac{sin \: x}{cos \: x}  - sin\:x}{1 - cos\:x}

 \implies\displaystyle \sf \lim \limits_{x \to \: 0} \: \dfrac{ \dfrac{sin \: x}{cos \: x}  -  \dfrac{sin\:x}{1} }{1 - cos\:x}

LCM of cos x and 1 = cos x

\implies\displaystyle \sf \lim \limits_{x \to \: 0} \: { \dfrac{sin \: x -sin\:x \:cos\:x  }{cos \: x(1 - cos\:x)}   }

Taking out sin x as common :-

\implies\displaystyle \sf \lim \limits_{x \to \: 0} \: { \dfrac{sin \: x (1- \:cos\:x  )}{cos \: x(1 - cos\:x)}   }

Now cancel out (1-cos x) from numerator and denominator.

\implies\displaystyle \sf \lim \limits_{x \to \: 0} \: { \dfrac{sin \: x   \:  \: \cancel{(1- \:cos\:x  )}}{cos \:  x \:  \: \cancel{(1- \:cos\:x  )}}   }

\implies\displaystyle \sf \lim \limits_{x \to \: 0} \: { \dfrac{sin \: x   }{cos \:  x }   }

Now put x = 0

\implies\displaystyle \sf \lim \limits_{x \to \: 0} \: { \dfrac{sin \: 0\degree }{cos \:  0 \degree}   }

We know :-

\underline{\boxed{\bf \sin(0)   = 0 }}

\underline{\boxed{\bf \cos(0)   = 1 }}

\implies\displaystyle \sf \lim \limits_{x \to \: 0} \:  \frac{0}{1}  = 0

Answer :

\displaystyle \sf \lim \limits_{x \to \: 0} \: \dfrac{tan\: x - sin\:x}{1 - cos\:x}  = 0

Similar questions