Math, asked by himanshukathariya, 5 hours ago

lim x=1 √4+x-√5 upon x-1​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:\displaystyle\lim_{x \to 1}\rm  \frac{ \sqrt{4 + x}  -  \sqrt{5} }{x - 1}

If we substitute directly x = 1, we get

\rm \:  =  \: \dfrac{ \sqrt{4 + 1}  -  \sqrt{5} }{1 - 1}

\rm \:  =  \: \dfrac{ \sqrt{5}  -  \sqrt{5} }{0}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form

So, the above limit can be evaluated by using the Method of Rationalization

\rm :\longmapsto\:\displaystyle\lim_{x \to 1}\rm  \frac{ \sqrt{4 + x}  -  \sqrt{5} }{x - 1}

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm  \frac{ \sqrt{4 + x}  -  \sqrt{5} }{x - 1} \times \dfrac{ \sqrt{4 + x}  +  \sqrt{5} }{ \sqrt{4 + x}  +  \sqrt{5} }

We know,

\boxed{\tt{ (x - y)(x + y) =  {x}^{2} -  {y}^{2}}}

So, using this, we get

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm  \frac{4 + x - 5}{(x - 1)( \sqrt{4 + x}  +  \sqrt{5})}

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm  \frac{x - 1}{(x - 1)( \sqrt{4 + x}  +  \sqrt{5})}

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm  \frac{\cancel{x - 1}}{\cancel{(x - 1)} \:  \: ( \sqrt{4 + x}  +  \sqrt{5})}

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm  \frac{1}{ \sqrt{4 + x} + \sqrt{5} }

\rm \:  =  \: \dfrac{1}{ \sqrt{1 + 4}  +  \sqrt{5} }

\rm \:  =  \: \dfrac{1}{ \sqrt{5}  +  \sqrt{5} }

\rm \:  =  \: \dfrac{1}{ 2\sqrt{5}}

Hence,

\rm \implies\:\:\boxed{\tt{ \displaystyle\lim_{x \to 1}\rm  \frac{ \sqrt{4 + x}  -  \sqrt{5} }{x - 1} =  \frac{1}{2 \sqrt{5} }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1}}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1}}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1}}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1}}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga}}

Similar questions