Math, asked by Jakso, 6 months ago

lim x—1 (√5x-4 -√x)/x³-1​

Answers

Answered by pulakmath007
4

SOLUTION

TO EVALUATE

\displaystyle  \sf{\lim_{x \to 1} \:  \frac{ \sqrt{5x - 4}  -  \sqrt{x} }{ {x}^{3}  - 1}}

EVALUATION

\displaystyle  \sf{\lim_{x \to 1} \:  \frac{ \sqrt{5x - 4}  -  \sqrt{x} }{ {x}^{3}  - 1}}

 \: \displaystyle  \sf{ = \lim_{x \to 1} \:  \frac{ (\sqrt{5x - 4}   +  \sqrt{x} )( \sqrt{5x - 4}  -  \sqrt{x} )}{ ({x}^{3}  - 1)( \sqrt{5x - 4}   +  \sqrt{x} )}}

 \: \displaystyle  \sf{ = \lim_{x \to 1} \:  \frac{ (5x - 4   - x)}{ (x - 1)( {x}^{2}  + x + 1)( \sqrt{5x - 4}   +  \sqrt{x} )}}

 \: \displaystyle  \sf{ = \lim_{x \to 1} \:  \frac{ (4x - 4   )}{ (x - 1)( {x}^{2}  + x + 1)( \sqrt{5x - 4}   +  \sqrt{x} )}}

 \: \displaystyle  \sf{ = \lim_{x \to 1} \:  \frac{ 4 }{( {x}^{2}  + x + 1)( \sqrt{5x - 4}   +  \sqrt{x} )}}

 \: \displaystyle  \sf{ =  \:  \frac{ 4 }{( {1}^{2}  + 1 + 1)( \sqrt{5 - 4}   +  \sqrt{1} )}}

 \: \displaystyle  \sf{ =  \:  \frac{ 4 }{3 \times 2}}

 \: \displaystyle  \sf{ =  \:  \frac{2}{3 }}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

2. the value of limited x to 0 sin7x+sin5x÷tan5x-tan2x is

https://brainly.in/question/28582236

Answered by genius1947
3

Solution ⤵️

To Find ⤵️

\displaystyle  \sf{\lim_{x \to 1} \:  \frac{ \sqrt{5x - 4}  -  \sqrt{x} }{ {x}^{3}  - 1}}

Calculation ⤵️

\displaystyle  \sf{\lim_{x \to 1} \:  \frac{ \sqrt{5x - 4}  -  \sqrt{x} }{ {x}^{3}  - 1}}

 \: \displaystyle  \sf{ = \lim_{x \to 1} \:  \frac{ (\sqrt{5x - 4}   +  \sqrt{x} )( \sqrt{5x - 4}  -  \sqrt{x} )}{ ({x}^{3}  - 1)( \sqrt{5x - 4}   +  \sqrt{x} )}}

 \: \displaystyle  \sf{ = \lim_{x \to 1} \:  \frac{ (5x - 4   - x)}{ (x - 1)( {x}^{2}  + x + 1)( \sqrt{5x - 4}   +  \sqrt{x} )}}

 \: \displaystyle  \sf{ = \lim_{x \to 1} \:  \frac{ (4x - 4   )}{ (x - 1)( {x}^{2}  + x + 1)( \sqrt{5x - 4}   +  \sqrt{x} )}}

 \: \displaystyle  \sf{ = \lim_{x \to 1} \:  \frac{ 4 }{( {x}^{2}  + x + 1)( \sqrt{5x - 4}   +  \sqrt{x} )}}

 \: \displaystyle  \sf{ =  \:  \frac{ 4 }{( {1}^{2}  + 1 + 1)( \sqrt{5 - 4}   +  \sqrt{1} )}}

 \: \displaystyle  \sf{ =  \:  \frac{ 4 }{3 \times 2}}

 \: \displaystyle  \sf{ =  \:  \frac{2}{3 }}

━━━━━━━━━━━━━━━━

{\textbf{\textsf{{\color{navy}\:{Hope}}\:{\purple{it}}\:{\pink{helps}}\:{\color{pink}{you!!♡}}}}}

Similar questions