Math, asked by vyshakg05, 4 months ago

lim x-1 (x^3-1/x^2-6x+5)​

Answers

Answered by amansharma264
7

EXPLANATION.

\sf \implies  \lim_{x \to 1} \dfrac{x^{3} -1}{x^{2} - 6x + 5}

As we know that,

Put the value of x = 1 in equation, and check their form.

\sf \implies \lim_{x \to 1} \dfrac{(1)^{3} -1}{(1)^{2}-6(1) + 5 }

\sf \implies  \lim_{x \to 1} \dfrac{0}{0}

As we can see that it is in the form of 0/0.

So, we can simply Factorizes the equation, we get.

\sf \implies  \lim_{x \to 1} \dfrac{x^{3} -1}{x^{2} -6x + 5}.

Factorizes the equation into middle term split, we get.

⇒ x² - 6x + 5.

⇒ x² - 5x - x + 5.

⇒ x(x - 5) - 1(x - 5).

⇒ (x - 1)(x - 5).

\sf \implies  \lim_{x \to 1} \dfrac{x^{3}-1 }{(x - 1)(x - 5)}

As we can write x³ - 1 as,

⇒ x³ - 1 = x³ - 1³.

It is in the form of a³ - b³.

Formula of a³ - b³,

⇒ a³ - b³ = (a - b)(a² + ab + b²).

⇒ (x³ - 1³) = (x - 1)(x² + x + 1).

Put the value in equation, we get.

\sf \implies  \lim_{x \to 1} \dfrac{(x - 1)(x^{2} + x + 1)}{(x - 1)(x - 5)}

Put the value of x = 1 in equation, we get.

\sf \implies  \lim_{x \to 1} \dfrac{(x^{2} + x+1) }{(x - 5)}

\sf \implies  \lim_{x \to 1} \dfrac{1^{2}+ 1+ 1 }{(1 - 5) }

\sf \implies  \lim_{x \to 1} \dfrac{3}{-4}

\sf \implies  \lim_{x \to 1} =  \dfrac{-3}{4}

Answered by mathdude500
2

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \:\lim_{x\to1} \: \dfrac{ {x}^{3}  - 1}{ {x}^{2}  - 6x + 5}

☆ On substituting directly x = 1, we get indeterminant form.

☆ So evaluate this, we use the concept of factorization.

☆ Use of identity and splitting of middle terms.

☆ identity used is

\tt \ \: :  ⟼  {x}^{3}  -  {y}^{3}  = (x - y)( {x}^{2}  + xy +  {y}^{2} )

─━─━─━─━─━─━─━─━─━─━─━─━─

☆ Now, Consider

\tt \:\lim_{x\to1} \: \dfrac{ {x}^{3}  - 1}{ {x}^{2}  - 6x + 5}

\tt \:   = \tt \:\lim_{x\to1} \: \dfrac{ {x}^{3}  -  {1}^{3} }{ {x}^{2}  - 5x  - x \: +  \: 5}

\tt  \:  = \:\lim_{x\to1} \:\dfrac{(x - 1)( {x}^{2} + x \times 1 +  {1}^{2})  }{x(x - 5) - 1(x - 5)}

\tt \:  =  \:\lim_{x\to1} \:\dfrac{ \cancel{( x - 1)}( {x}^{2} + x + 1) }{ \cancel{(x - 1)}(x - 5)}

\tt \ \:  = \dfrac{1 + 1 + 1}{1 - 5}

\tt \:   =  \:  -  \: \dfrac{3}{4}

Similar questions