Math, asked by jatinkumar940000, 5 hours ago

lim [x-2/x^2-x - 1/x^3-3x^2+2x]

x=1 ​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 1}\rm \bigg[\dfrac{x - 2}{ {x}^{2}  - x} - \dfrac{1}{ {x}^{3}  -  {3x}^{2}  + 2x}  \bigg]

If we substitute directly x = 1, we get

 \rm \:  =  \:  \bigg[\dfrac{1 - 2}{ {1}^{2}  - 1} - \dfrac{1}{ {1}^{3}  -  {3(1)}^{2}  + 2}  \bigg]

 \rm \:  =  \:  -  \infty  -  \infty

which is indeterminant form.

So,

\rm :\longmapsto\:\displaystyle\lim_{x \to 1}\rm \bigg[\dfrac{x - 2}{ {x}^{2}  - x} - \dfrac{1}{ {x}^{3}  -  {3x}^{2}  + 2x}  \bigg]

 \rm \:  =  \: \displaystyle\lim_{x \to 1}\rm \bigg[\dfrac{x - 2}{x(x - 1)} -  \frac{1}{x( {x}^{2}  - 3x + 2)}  \bigg]

 \rm \:  =  \: \displaystyle\lim_{x \to 1}\rm \bigg[\dfrac{x - 2}{x(x - 1)} -  \frac{1}{x( {x}^{2}  - x - 2x + 2)}  \bigg]

 \rm \:  =  \: \displaystyle\lim_{x \to 1}\rm \bigg[\dfrac{x - 2}{x(x - 1)} -  \frac{1}{x[x(x - 1) - 2(x - 1)]}  \bigg]

 \rm \:  =  \: \displaystyle\lim_{x \to 1}\rm \bigg[\dfrac{x - 2}{x(x - 1)} -  \frac{1}{x(x - 1)(x - 2)}  \bigg]

 \rm \:  =  \: \displaystyle\lim_{x \to 1}\rm \bigg[\dfrac{ {(x - 2)}^{2} - 1 }{x(x - 1)(x - 2)} \bigg]

 \rm \:  =  \: \displaystyle\lim_{x \to 1}\rm \bigg[\dfrac{ {x}^{2} + 4 - 4x - 1 }{x(x - 1)(x - 2)} \bigg]

 \rm \:  =  \: \displaystyle\lim_{x \to 1}\rm \bigg[\dfrac{ {x}^{2}- 4x + 3 }{x(x - 1)(x - 2)} \bigg]

 \rm \:  =  \: \displaystyle\lim_{x \to 1}\rm \bigg[\dfrac{ {x}^{2}- x - 3x + 3 }{x(x - 1)(x - 2)} \bigg]

 \rm \:  =  \: \displaystyle\lim_{x \to 1}\rm \bigg[\dfrac{ x(x - 1) - 3(x - 1) }{x(x - 1)(x - 2)} \bigg]

 \rm \:  =  \: \displaystyle\lim_{x \to 1}\rm \bigg[\dfrac{ (x - 1)(x - 3) }{x(x - 1)(x - 2)} \bigg]

 \rm \:  =  \: \displaystyle\lim_{x \to 1}\rm \bigg[\dfrac{x - 3}{x(x - 2)} \bigg]

 \rm \:  =  \: \dfrac{1 - 3}{1(1 - 2)}

 \rm \:  =  \: \dfrac{ - 2}{ - 1}

 \rm \:  =  \: 2

Hence,

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 1}\rm \bigg[\dfrac{x - 2}{ {x}^{2}  - x} - \dfrac{1}{ {x}^{3}  -  {3x}^{2}  + 2x}  \bigg] = 2}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1}}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1}}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1}}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1}}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga}}

Answered by Missincridedible
2

\huge\color{purple}{ \colorbox{orange}{\colorbox{white} {hlo}}}

Attachments:
Similar questions