Math, asked by prathamyadavsandy, 11 months ago

lim x➡3
x^3 - 4x – 15\x^3 + x² - 6x – 18 ​

Answers

Answered by harendrachoubay
7

The vaue is "\frac{23}{27}".

Step-by-step explanation:

We have

\lim_{x \to \3} \frac{x^{3} - 4\times\x - 15 }{x^{3} + x^{2} - 6\times\x - 18}

Pux x = 0, It is\dfrac{0}{0} fron.

Applying L'Hospital rule,

Put  x = 3, we get

\frac{3\times\3^{2} - 4 - 0}{3\times\3^{2}  + 2\times\3  -  6 - 0]</p><p>= [tex]\dfrac{27 - 4}{27 + 6 - 6}

= \dfrac{23}{27}

Hence, the vaue is \dfrac{23}{27}.

Answered by erinna
10

The value of given limit is \frac{23}{27}.

Step-by-step explanation:

The given limit problem is

lim_{x\rightarrow 3} (\dfrac{x^3 - 4x -15}{x^3 + x^2- 6x- 18})

Apply limits.

\dfrac{(3)^3 - 4(3) -15}{(3)^3 + (3)^2- 6(3)- 18})=\dfrac{0}{0}

It is a \frac{0}{0} form.

L'Hospital rule: After applying the limits if we get \frac{0}{0} form, then

lim_{x\rightarrow a}=\dfrac{f(x)}{g(x)}=lim_{x\rightarrow a}=\dfrac{f'(x)}{g'(x)}

Using L'Hospital rule we get

lim_{x\rightarrow 3} (\dfrac{x^3 - 4x -15}{x^3 + x^2- 6x- 18})=lim_{x\rightarrow 3} (\dfrac{\frac{d}{dx}(x^3 - 4x -15)}{\frac{d}{dx}(x^3 + x^2- 6x- 18)})

lim_{x\rightarrow 3} (\dfrac{x^3 - 4x -15}{x^3 + x^2- 6x- 18})=lim_{x\rightarrow 3} (\dfrac{3x^2 - 4}{3x^2 +2x- 6})

Apply limits on right side.

lim_{x\rightarrow 3} (\dfrac{x^3 - 4x -15}{x^3 + x^2- 6x- 18})=\dfrac{3(3)^2 - 4}{3(3)^2 +2(3)- 6}

lim_{x\rightarrow 3} (\dfrac{x^3 - 4x -15}{x^3 + x^2- 6x- 18})=\dfrac{23}{27}

Therefore, the value of given limit is \frac{23}{27}.

#Learn more

Solve this question by l'hospital rule...

https://brainly.in/question/5216178

Similar questions