Math, asked by sid10173, 1 day ago

lim x_4 {1/log (x-3) - 1/x-4 }

Attachments:

Answers

Answered by talpadadilip417
0

Step-by-step explanation:

 \sf \red{\underset{x \rightarrow 4}{lim}\left\{\frac{1}{\log (x-3)}-\frac{1}{x-4}\right\}}

 \sf \pink{\underset{X \rightarrow 4}{ lim}\left \{\dfrac{x-4-\ln (x-3)}{\ln (x-3)(x-4)}\right \}}

  \sf \purple{\underset{X \rightarrow 4}{lim}\left \{\dfrac{-\frac{1}{x-3}+1}{\frac{x-4}{x-3}+\ln (x-3)}\right \} }

 \sf \blue{\underset{X \rightarrow 4}{lim}\left \{\dfrac{X-4}{X-4+\ln (X-3)(X-3)}\right \}}

Apply L'Hopital's Rule

 \sf \green{\underset{X \rightarrow 4}{Lim}\left \{\frac{1}{\ln (X-3)+2}\right \}}

Plug In The Value X=4,We Get,

 \tt \orange{ =  \dfrac{1}{  \ln(4 - 3)  + 2} }

 \tt \purple{  = \dfrac{1}{2} }

Similar questions