Math, asked by Dreamer01, 1 year ago

lim x → ∞ 4x^2-5x+1/5x^2+2x+3​

Answers

Answered by Anonymous
32

Answer:

\large \bold\red{\frac{4}{5} }

Step-by-step explanation:

Given,

\displaystyle\lim_{x \to \infty} \frac{4 {x}^{2}  - 5x + 1}{5 {x}^{2} + 2x + 3 }

Clearly,

It's ∞/∞ form, when x = ∞.

Therefore,

We can apply L Hospital's Rule here.

Therefore,

We get,

 = \displaystyle\lim_{x \to \infty} \frac{ \frac{d}{dx} (4 {x}^{2}  - 5x + 1)}{ \frac{d}{dx}(5 {x}^{2} + 2x + 3)  }  \\  \\  = \displaystyle\lim_{x \to \infty} \frac{8x - 5}{10x + 2}

Again,

It's in ∞/∞ form.

Therefore,

Applying L Hospital's Rule,

We get,

 = \displaystyle\lim_{x \to \infty} \frac{ \frac{d}{dx}(8x - 5) }{ \frac{d}{dx}(10x + 2) }  \\  \\  = \displaystyle\lim_{x \to \infty} \frac{8}{10}  \\  \\  =   \large \bold{\frac{4}{5} }

Answered by RvChaudharY50
59

\LARGE\underline{\underline{\sf \red{T}\blue{o}\:\green{F}\orange{i}\pink{n}\red{d}:}}

correct Question

lim x → ∞ 4x^2-5x+1/5x^2+2x-3

\LARGE\underline{\underline{\sf \red{S}\blue{o}\green{l}\orange{u}\pink{t}\purple{i}\orange{o}\red{n}:}}

Lets solve first numerator and denominator d/dx first by

d/dx (x^n+Bx+A) = nx+B

in numerator we have

 \frac{d}{dx} (4 {x}^{2}  - 5x + 1) \\  \\ \frac{d}{dx} (2 \times 4x - 5) \\  \\ (8x - 5)

in denominator we have ,

  \frac{d}{dx} (5 {x}^{2}  + 2x  -  3 )\\  \\ \frac{d}{dx} (2 \times 5x + 2) \\  \\  (10x + 2)

Now we have ,

lim x → ∞( \frac{8x - 5}{10x + 2} )

Its now again in ∞/∞ form,

again Differentiation , it we get,

As we know d/dx (nx+b) = n ........

So,

lim x → ∞ \:  \frac{ \frac{d}{dx}(8x - 5) }{ \frac{d}{dx}(10x + 2) }  \\  \\ lim x → ∞ \:  \:  \frac{8}{10}

\huge{\frac{4}{5}}

\huge\underline\mathfrak\green{Hope\:it\:Helps\:You}

Similar questions