Math, asked by cjetharam955, 3 months ago

lim. x^5-32÷x^3-8
x-2​

Answers

Answered by amansharma264
10

EXPLANATION.

\sf \implies  \lim_{x \to 2} \dfrac{x^{5} - 32}{x^{3} - 8}

As we know that,

Put the value of x = 2 in equation and check their indeterminant form.

\sf \implies  \lim_{x \to 2} \dfrac{(2)^{5} - 32}{(2)^{3} - 8}

\sf \implies  \lim_{x \to 2} \dfrac{32 - 32}{8 - 8}

\sf \implies  \lim_{x \to 2}\dfrac{0}{0}

As we can see that,

It is a form of 0/0 indeterminant form.

We can simply factorizes the equation, we get.

Formula of :

(x⁵ - y⁵) = (x - y)(x⁴ + a³b + a²b² + ab³ + b⁴).

(x³ - y³) = (x - y)(x² + xy + y²).

We can write as,

(x⁵ - 2⁵) = (x - 2)(x⁴ + x³(2) + x²(2)² + x(2)³ + (2)⁴).

(x⁵ - 2⁵) = (x - 2)(x⁴ + 2x³ + 4x² + 8x + 16).

(x³ - 2³) = (x - 2)(x² + 2x + 4).

Using the formula in equation, we get.

\sf \implies  \lim_{x \to 2} \dfrac{x^{5} - 2^{5} }{x^{3} - 2^{3} }

\sf \implies  \lim_{x \to 2} \dfrac{(x - 2)(x^{4} + 2x^{3}+ 4x^{2} + 8x +  16) }{(x - 2)(x^{2} + 2x + 4)}

\sf \implies  \lim_{x \to 2} \dfrac{(x^{4} + 2x^{3}+ 4x^{2} + 8x +  16) }{(x^{2} + 2x + 4)}

Put the value of x = 2 in equation, we get.

\sf \implies  \lim_{x \to 2} \dfrac{((2)^{4} + 2(2)^{3}+ 4(2)^{2} + 8(2) +  16) }{((2)^{2} + 2(2) + 4)}

\sf \implies  \lim_{x \to 2} \dfrac{(16 + 16+ 16 + 16 +  16) }{(4 + 4 + 4)}

\sf \implies  \lim_{x \to 2} \dfrac{80}{12}

\sf \implies  \lim_{x \to 2} = \dfrac{20}{3}

                                                                                                                         

MORE INFORMATION.

Logarithmic inequality.

Let a is real number, such that.

(1) = For a > 1 the inequality ㏒ₐx > ㏒ₐy & x > y are equivalent.

(2) = If a > 1 then ㏒ₐx < α ⇒ 0 < x < \sf a^{\alpha } .

(3) = If a > 1 then ㏒ₐx > α ⇒ x > \sf a^{\alpha }.

(4) = For 0 < a < 1 the inequality 0 < x < y & ㏒ₐx > ㏒ₐy are equivalent.

(5) = If 0 < a < 1 then ㏒ₐx < α ⇒ x > \sf a^{\alpha }.

Answered by mathdude500
3

\begin{gathered}\Large{\bold{{\underline{Formula \:  Used \::}}}}  \end{gathered}

 \boxed{ \blue{\bf \:\lim_{x\to \: a}\dfrac{ {x}^{n}  -  {a}^{n} }{x - a}  =  {na}^{n - 1} }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\bf \:\lim_{x\to2}\dfrac{ {x}^{5}  -  32 }{ {x}^{3} - 8 }

On substituting directly x = 0, we get indeterminant form

 \rm :  \implies \:\:\lim_{x\to2}\dfrac{ {x}^{5}  -   {2}^{5}  }{ {x}^{3} -  {2}^{3} }

Now, divide both terms by x - 2, we get

\rm :  \implies \:\:\lim_{x\to2}\dfrac{\dfrac{{x}^{5}  -   {2}^{5}}{x - 2} }{\dfrac{{x}^{3}  -   {2}^{3}}{x - 2} }

 \rm :  \implies \:\dfrac{5 {(2)}^{5 - 1} }{3 {(2) }^{3 - 1} }

 \rm :  \implies \:\dfrac{5 \times  {(2)}^{4} }{3 \times  {(2)}^{2} }

 \rm :  \implies \:\dfrac{5}{3}  \times 4

 \rm :  \implies \:\dfrac{20}{3}

 \boxed {\pink{\rm :  \implies \:\:\lim_{x\to2}\dfrac{ {x}^{5}  -  32}{ {x}^{3}  - 8}  = \dfrac{20}{3}  }}

─━─━─━─━─━─━─━─━─━─━─

Explore more ;-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{sin \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{tan \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {e}^{x} - 1 }{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ log(1 + x) }{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {a}^{x}  - 1}{x} \:  =  \: log \: a }}}}}} \\ \end{gathered}

Similar questions