Math, asked by bhargavasaransh037, 3 months ago

lim x -- 5
e^x-e^5÷x-5​

Answers

Answered by Asterinn
4

 \displaystyle \rm \longrightarrow \lim_{ x\to5}{ \dfrac{ {e}^{x}  -{e}^{5} }{x - 5} }

If we put x = 5 in the above expression then we will get 0/0 form. Now , 0/0 is indeterminate form. So, we will apply L'Hospital rule while solving this question. We will differentiate both numerator and denominator seperately.

 \displaystyle \rm \longrightarrow \lim_{ x\to5} \dfrac{ \dfrac{d({e}^{x}  -{e}^{5})}{dx} }{ \dfrac{d(x - 5)}{dx} }  \\  \\  \\ \displaystyle \rm \longrightarrow \lim_{ x\to5}{ \dfrac{ {e}^{x}  -0}{1 - 0} } \\  \\  \\ \displaystyle \rm \longrightarrow \lim_{ x\to5}{ \dfrac{ {e}^{x}}{1} }\\  \\  \\ \displaystyle \rm \longrightarrow  {e}^{5}

Additional Information :-

d(e^x)/dx = e^x

d(x^n)/dx = n x^(n-1)

d(ln x)/dx = 1/x

d(sin x)/dx = cos x

d(cos x)/dx = - sin x

d(tan x)/dx = sec² x

d(sec x)/dx = tan x * sec x

d(cot x)/dx = - cosec²x

d(cosec x)/dx = - cosec x * cot x

Answered by mathdude500
2

\large\underline\blue{\bold{Given \:  Question :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:Evaluate \: \displaystyle \rm \longrightarrow \lim_{ x\to5} \dfrac{ {e}^{x} -  {e}^{5}  }{x - 5}

\large\underline\blue{\bold{Formula \:  used:-  }}

\bf \:  \displaystyle \rm \ \lim_{ x\to0} \dfrac{  ( {e}^{x} -  1)  }{x }  = 1

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:\displaystyle \rm \longrightarrow \lim_{ x\to5} \dfrac{ {e}^{x} -  {e}^{5}  }{x - 5}

\sf \:  Put  \: x = 5 + h

\sf \:  As \: x⟼5\sf\implies \:h⟼0

\bf \:\displaystyle \rm \longrightarrow So, \: \lim_{ x\to5} \dfrac{ {e}^{x} -  {e}^{5}  }{x - 5}  = \bf \:\displaystyle \rm \ \lim_{ h\to0} \dfrac{ {e}^{5 + h} -  {e}^{5}  }{5 + h - 5}

\bf \: = \displaystyle \rm \ \lim_{ h\to0} \dfrac{ {e}^{5}   \times {e}^{h} -  {e}^{5}  }{h }

\bf \: = \displaystyle \rm \ \lim_{ h\to0} \dfrac{ {e}^{5} ( {e}^{h} -  1)  }{h }

\bf \: = \displaystyle \rm \ {e}^{5}  \lim_{ h\to0} \dfrac{ ( {e}^{h} -  1)  }{h }

\sf \:   =  {e}^{5}  \times 1 =  {e}^{5}

\large{\boxed{\boxed{\bf{Hence, \bf \:\displaystyle \rm \ \lim_{ x\to5} \dfrac{ {e}^{x} -  {e}^{5}  }{x - 5}  =  {e}^{5} }}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions