Math, asked by dkolhe86, 7 months ago

lim x-7 [x³-343] /√x-√7



Answers

Answered by shadowsabers03
8

Given limit,

\displaystyle\longrightarrow\lim_{x\to 7}\left(\dfrac{x^3-343}{\sqrt x-\sqrt7}\right)=\lim_{x\to 7}\left(\dfrac{x^3-7^3}{x^{\frac{1}{2}}-7^{\frac{1}{2}}}\right)

We have,

\displaystyle\longrightarrow \lim_{x\to a}\left(\dfrac{x^n-a^n}{x-a}\right)=na^{n-1}

Using this formula we can have the following result.

\displaystyle\longrightarrow \lim_{x\to a}\left(\dfrac{x^m-a^m}{x-a}\right)\div\lim_{x\to a}\left(\dfrac{x^n-a^n}{x-a}\right)=\dfrac{ma^{m-1}}{na^{n-1}}

\displaystyle\longrightarrow \lim_{x\to a}\left(\dfrac{x^m-a^m}{x-a}\div\dfrac{x^n-a^n}{x-a}\right)=\dfrac{m}{n}\cdot a^{(m-1)-(n-1)}

\displaystyle\longrightarrow \lim_{x\to a}\left(\dfrac{x^m-a^m}{x-a}\times\dfrac{x-a}{x^n-a^n}\right)=\dfrac{m}{n}\cdot a^{m-1-n+1}

\displaystyle\longrightarrow \lim_{x\to a}\left(\dfrac{x^m-a^m}{x^n-a^n}\right)=\dfrac{m}{n}\cdot a^{m-n}

Taking a=7,\ m=3 and n=\dfrac{1}{2},

\displaystyle\longrightarrow \lim_{x\to 7}\left(\dfrac{x^3-7^3}{x^{\frac{1}{2}}-7^{\frac{1}{2}}}\right)=\dfrac{3}{\left(\dfrac{1}{2}\right)}\cdot 7^{\,3-\frac{1}{2}}

\displaystyle\longrightarrow\underline{\underline{\lim_{x\to 7}\left(\dfrac{x^3-343}{\sqrt x-\sqrt7}\right)=6\times7^{\frac{5}{2}}}}

Similar questions