Math, asked by muskanjain2510, 2 months ago

lim x →a {1-cos(x-a)}²/(x-a)⁴​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to a}\rm  \frac{ {\bigg(1 - cos(x - a) \bigg) }^{2} }{ {(x - a)}^{4} }

If we substitute directly x = a, we get

\rm \:  =  \: \dfrac{ {\bigg(1 - cos(a - a)\bigg) }^{2} }{ {(a - a)}^{4} }

\rm \:  =  \: \dfrac{ {\bigg(1 - cos0\bigg) }^{2} }{ {0}^{4} }

\rm \:  =  \: \dfrac{ {\bigg(1 -1\bigg) }^{2} }{0}

\rm \:  =  \: \dfrac{ {\bigg(0\bigg) }^{2} }{0}

\rm \:  =  \: \dfrac{ 0 }{0}  \:  \red{ \: which \: is \: meaningless}

So, as to evaluate

\rm :\longmapsto\:\displaystyle\lim_{x \to a}\rm  \frac{ {\bigg(1 - cos(x - a) \bigg) }^{2} }{ {(x - a)}^{4} }

we use method of Substitution,

\red{ \boxed{ \sf{ \:Put \: x = a + h, \:  \: as \: x \:  \to \: a, \:  \: so \: h \:  \to \: 0}}}

So, above expression can be rewritten as

\rm \:  = \:\displaystyle\lim_{h \to 0}\rm  \frac{ {\bigg(1 - cos(a + h - a) \bigg) }^{2} }{ {(a + h - a)}^{4} }

\rm \:  = \:\displaystyle\lim_{h \to 0}\rm  \frac{ {\bigg(1 - cosh \bigg) }^{2} }{ {h}^{4} }

\rm \:  = \:\displaystyle\lim_{h \to 0}\rm  \frac{ {\bigg(2 {sin}^{2}\dfrac{h}{2}   \bigg) }^{2} }{ {h}^{4} }

\rm \:  = \:\displaystyle\lim_{h \to 0}\rm  \frac{ {4 {sin}^{4}\dfrac{h}{2}}}{ {h}^{4} }

\rm \:  = 4 \: \displaystyle\lim_{h\to 0}\rm  {\bigg[\dfrac{sin\dfrac{h}{2} }{h} \bigg]}^{4}

\rm \:  = 4 \: \displaystyle\lim_{h\to 0}\rm  {\bigg[\dfrac{sin\dfrac{h}{2} }{\dfrac{h}{2}  \times 2} \bigg]}^{4}

\rm \:  = \dfrac{4}{16}  \: \displaystyle\lim_{h\to 0}\rm  {\bigg[\dfrac{sin\dfrac{h}{2} }{\dfrac{h}{2}} \bigg]}^{4}

We know,

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1}}}

So, using this, we get

\rm \:  = \dfrac{1}{4}  \:  \times  {1}^{4}

\rm \:  = \dfrac{1}{4}

Hence,

\rm :\longmapsto\:\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to a}\rm  \frac{ {\bigg(1 - cos(x - a) \bigg) }^{2} }{ {(x - a)}^{4} } =  \frac{1}{4}}}}

Additional Information :-

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1}}}

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1}}}

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1}}}

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga}}}

Similar questions