Math, asked by nirajcharchit1186, 6 hours ago

lim x—-a x^3-a^3/x^10-a^10

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to a}\rm  \frac{ {x}^{3}  -  {a}^{3} }{ {x}^{10}  -  {a}^{10} }

If we substitute directly x = a, we get

\rm \:  =  \: \dfrac{ {a}^{3}  -  {a}^{3} }{ {a}^{10}  -  {a}^{10} }

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

So,

\rm :\longmapsto\:\displaystyle\lim_{x \to a}\rm  \frac{ {x}^{3}  -  {a}^{3} }{ {x}^{10}  -  {a}^{10} }

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{x \to a}\rm \dfrac{\dfrac{ {x}^{3}  -  {a}^{3} }{x - a} }{\dfrac{ {x}^{10}  -  {a}^{10} }{x - a} }

\rm \:  =  \: \dfrac{\displaystyle\lim_{x \to a}\rm  \frac{ {x}^{3}  -  {a}^{3} }{x - a} }{\displaystyle\lim_{x \to a}\rm  \frac{ {x}^{10}  -  {a}^{10} }{x - a} }

We know

 \green{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to a}\rm  \frac{ {x}^{n}  -  {a}^{n} }{x - a} =  {na}^{n - 1}}}}

So, using this, we get

\rm \:  =  \: \dfrac{ {3a}^{3 - 1} }{ {10a}^{10 - 1} }

\rm \:  =  \: \dfrac{ {3a}^{2} }{ {10a}^{9} }

\rm \:  =  \: \dfrac{3}{10} {a}^{2 - 9}

\rm \:  =  \: \dfrac{3}{10} {a}^{ - 7}

\rm \:  =  \: \dfrac{3}{10 {a}^{7} }

Hence,

 \purple{\rm\implies \:\:\boxed{\tt{ \displaystyle\lim_{x \to a}\rm  \frac{ {x}^{3}  -  {a}^{3} }{ {x}^{10}  -  {a}^{10} }  =  \frac{3}{10 {a}^{7} }}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \green{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x}  = 1}}}

 \green{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x}  = 1}}}

 \green{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x}  = 1}}}

 \green{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x}  = 1}}}

 \green{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x}  = loga}}}

Answered by Missincridedible
9

\color{red}{ \colorbox{blue}{\colorbox{orange} {hope \: it \: helps \: you}}}

Attachments:
Similar questions