Math, asked by singhjaspreet4029, 4 months ago

lim x approach to π/2 cotx-cosx/(π-2x)³

Answers

Answered by mathdude500
5

\large\underline\purple{\bold{Solution :-  }}

\tt \:\lim_{x \: \to \: \frac{\pi}{2} } \:\dfrac{cotx - cosx  }{{(\pi \:  - 2x)}^{3}}

☆ On substituting the value of x directly, we get indeterminant form.

☆ To evaluate this limit, the following formula have used :-

 \boxed{ \red{\tt \:\lim_{x\to0} \:\dfrac{sinx}{x}  = 1}}

☆ Now, Consider

\tt \:\lim_{x \: \to \: \frac{\pi}{2} } \:\dfrac{cotx - cosx  }{{(\pi \:  - 2x)}^{3}}

\tt \ \: :  ⟼ Let  \: x \:  = \dfrac{\pi}{2}  - y

\tt \ \: :  ⟼  \: As \: x \:  \to \: \dfrac{\pi}{2}  \:   \:   \: \tt\implies \:y \:  \to \: 0

\tt \ \: :  ⟼ \tt \:\lim_{y\to0} \:\dfrac{cot(\dfrac{\pi}{2} - y) - cos(\dfrac{\pi}{2}  - y) }{ { \bigg(\pi \:  - 2(\dfrac{\pi}{2}  - y) \bigg)}^{3} }

\tt \ \: :  ⟼ \tt \:\lim_{y\to0} \:\dfrac{tany - siny}{(\pi \:  - \pi \:  + 2y) ^{3} }

\tt \ \: :  ⟼ \tt \:\lim_{y\to0} \:\dfrac{\dfrac{siny}{cosy}  - siny}{ {8y}^{3} }

\tt \ \: :  ⟼ \tt \:\dfrac{1}{8}  \: \lim_{y\to0} \:\dfrac{siny \bigg(\dfrac{1}{cosy} - 1 \bigg) }{ {y}^{3} }

\tt \ \: :  ⟼ \dfrac{1}{8} \tt \:\lim_{y\to0} \:\dfrac{siny(1 - cosy)}{cosy \:   \times ({y}^{3} )}

\tt \:   = \dfrac{1}{8} \tt \:\lim_{y\to0} \:\dfrac{siny}{y}  \times \tt \:\lim_{y\to0} \:\dfrac{1}{cosy}  \times \tt \:\lim_{y\to0} \:\dfrac{1 - cosy}{ {y}^{2} }

\tt \ \: :  ⟼ \dfrac{1}{8}  \times 1 \times 1 \times \tt \:\lim_{y\to0} \:\dfrac{2 {sin}^{2}\dfrac{y}{2}  }{ {y}^{2} }

\tt \ \: :  ⟼ \dfrac{1}{4}  \: \tt \:\lim_{y\to0} \:\dfrac{ {sin}^{2} \dfrac{y}{2} }{\dfrac{ {y}^{2} }{4}  \times 4}

\tt \ \: :  ⟼ \dfrac{1}{4}  \times \dfrac{1}{4}

\tt \ \: :  ⟼ \dfrac{1}{16}

Similar questions