Math, asked by mass8263, 1 year ago

Lim (x approaches1) [(ln(1+x) - ln2)(3.4x-1 - 3x)] / [(7+x)1/3 - (1 + 3x)1/2]sin(x-1)

Answers

Answered by pulakmath007
5

SOLUTION

TO EVALUATE

\displaystyle  \sf{\lim_{x \to 1} \:  \frac{ (\ln \: (1 + x) -  \ln 2)(3. {4}^{x - 1}  - 3x)}{  \bigg[{(7 + x)}^{ \frac{1}{3} }  -  {(1 + 3x)}^{ \frac{1}{2} } \bigg]. \sin (x - 1) }}

EVALUATION

Here the given expression is

\displaystyle  \sf{\lim_{x \to 1} \:  \frac{ (\ln \: (1 + x) -  \ln 2)(3. {4}^{x - 1}  - 3x)}{  \bigg[{(7 + x)}^{ \frac{1}{3} }  -  {(1 + 3x)}^{ \frac{1}{2} } \bigg]. \sin (x - 1) }}

\displaystyle  \sf{ = \lim_{x \to 1} \:  \frac{3. \ln \bigg( \frac{1 + x}{2}  \bigg)({4}^{x - 1}  - x)}{  \bigg[{(7 + x)}^{ \frac{1}{3} }  -  {(1 + 3x)}^{ \frac{1}{2} } \bigg]. \sin (x - 1) }}

\displaystyle  \sf{ = \lim_{x \to 1} \:  \frac{3. \ln \bigg( 1 + \frac{ x - 1}{2}  \bigg)({4}^{x - 1}  - x)}{  \bigg[{(7 + x)}^{ \frac{1}{3} }  -  {(1 + 3x)}^{ \frac{1}{2} } \bigg]. \sin (x - 1) }}

\displaystyle  \sf{ = \frac{3}{2} . \lim_{x \to 1} \:  \: \frac{\ln \bigg( 1 + \frac{ x - 1}{2}  \bigg)}{\frac{ x - 1}{2}} \: \lim_{x \to 1} \:  \frac{x - 1}{\sin (x - 1)}  \:.  \:  \lim_{x \to 1} \: \frac{ ({4}^{x - 1}  - x)}{  \bigg[{(7 + x)}^{ \frac{1}{3} }  -  {(1 + 3x)}^{ \frac{1}{2} } \bigg] }}

\displaystyle  \sf{ = \frac{3}{2} . \lim_{x \to 1} \:  \: \frac{\ln \bigg( 1 + \frac{ x - 1}{2}  \bigg)}{\frac{ x - 1}{2}} \: \lim_{x \to 1} \:  \frac{x - 1}{\sin (x - 1)}  \:.  \:  \lim_{x \to 1} \: \frac{({4}^{x - 1}  - x)}{  \bigg[{(7 + x)}^{ \frac{1}{3} }  -  {(1 + 3x)}^{ \frac{1}{2} } \bigg] }}

\displaystyle  \sf{ = \frac{3}{2} . 1.1 \:.  \:  \lim_{x \to 1} \: \frac{({4}^{x - 1}  - x)}{  \bigg[{(7 + x)}^{ \frac{1}{3} }  -  {(1 + 3x)}^{ \frac{1}{2} } \bigg] }}

\displaystyle  \sf{ = \frac{3}{2}  \lim_{x \to 1} \: \frac{({4}^{x - 1} \ln 4  - 1)}{  \bigg[ \frac{ 1}{3}. {(7 + x)}^{ \frac{ - 2}{3} }  -   \frac{3}{2} {(1 + 3x)}^{ \frac{ - 1}{2} } \bigg] }}

\displaystyle  \sf{ = \frac{3}{2}  \: \frac{({4}^{0} \ln 4  - 1)}{  \bigg[ \frac{ 1}{3}. {(7 + 1)}^{ \frac{ - 2}{3} }  -   \frac{3}{2} {(1 + 3)}^{ \frac{ - 1}{2} } \bigg] }}

\displaystyle  \sf{ = \frac{3}{2}  \: \frac{({4}^{0} \ln 4  - 1)}{  \bigg[ \frac{ 1}{3}. {8}^{ \frac{ - 2}{3} }  -   \frac{3}{2}. {4}^{ \frac{ - 1}{2} } \bigg] }}

\displaystyle  \sf{ = \frac{3}{2}  \: \frac{(\ln 4  - 1)}{  \bigg[ \frac{ 1}{3}. \frac{1}{4}   -   \frac{3}{2}.  \frac{1}{2}  \bigg] }}

\displaystyle  \sf{ =  - \frac{3 6}{16} . \ln  \bigg( \frac{4}{e}  \bigg)\: }

\displaystyle  \sf{ =  - \frac{9}{4} . \ln  \bigg( \frac{4}{e}  \bigg)\: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Answered by jaykaran2435
1

Answer:

Step-by-step explanation:

Attachments:
Similar questions