Math, asked by sapnahanuman79, 3 months ago

lim. x give 0 (e^x-1)÷x please anyone with humble heart find this answer step by step​

Answers

Answered by aryan073
2

Given :

\\ \rm{lim_{x \to 0} \: \dfrac{e^{x}-1}{x} }

________________________________________

To Find :

• The value of lim x tends to 0=?

________________________________________

Solution :

\\ \implies\sf{lim_{x \to 0 } \: \: \dfrac{e^{x} -1}{x}}

By applying L-hospital rule:

\\ \implies\sf{lim_{x \to 0} \: \: \dfrac{dy}{dx} \dfrac{e^{x} -1}{x}}

\\ \implies\sf{lim_{ x \to 0} \: \: \dfrac{e^{x} -0}{1}}

\\ \implies\sf{lim_{x \to 0} \: \: {e^{x}}}

As we know that e^0 =1

\\ \implies\sf{lim_{x \to 0 } \: \: e^{0}}

\\ \implies \sf{lim_{ x \to 0} \:  \: 1}

\\ \therefore\red\bigstar{\boxed{\sf{lim_{ x \to 0} \: \: \: 1}}}

Similar questions