Math, asked by zayed0605, 9 months ago

lim x=>0 3^sinx-1 / x
solve using a^x-1/x =loga formula​

Answers

Answered by pulakmath007
5

\huge\boxed{\underline{\underline{\green{Solution}}}} </p><p>

\displaystyle \lim_{x \to 0} \frac{ {3}^{sinx} - 1 }{x}

\displaystyle let \:  \:  \: y \:  =  \: sinx

so \:  \:  \:  \: \displaystyle {y \to 0} \:  \: as \:  \:  \: {x \to 0}

Hence

\displaystyle \lim_{x \to 0}  \: \frac{ {3}^{sinx} - 1 }{x}

=\displaystyle \lim_{x \to 0}  \: (\frac{ {3}^{sinx} - 1 }{sinx} \times  \frac{sinx}{x} )

 = \displaystyle \lim_{x \to 0}  \: \frac{ {3}^{sinx} - 1 }{sinx} \times \lim_{x \to 0}  \: \frac{sinx}{x}

 = \displaystyle \lim_{y \to 0}  \: \frac{ {3}^{y} - 1 }{y} \times \lim_{x \to 0}  \: \frac{sinx}{x}

 =  \:   log3 \times 1 \:  \:  \: ( \because \displaystyle \lim_{y \to 0}  \: \frac{ {a}^{x} - 1 }{x}  = log \: a \:  \:  \: and \:  \: \displaystyle \lim_{x \to 0}  \: \frac{ sinx}{x} = 1 \: )

 = log \: 3

</p><p></p><p>\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}</p><p>

Similar questions
Math, 9 months ago