Math, asked by zayed0605, 9 months ago

lim x =>0 4^x/2 + 4^-x/2 -2 / x^2
without using L hospital law

Answers

Answered by pulakmath007
6

\huge\boxed{\underline{\underline{\green{Solution}}}}

\displaystyle \lim_{x \to 0}  \:  \: \frac{ {4}^{ \frac{x}{2}  } +  {4}^{  - \frac{x}{2} }  - 2 }{ {x}^{2} }

 = \displaystyle \lim_{x \to 0}  \:  \: \frac{ { ({2}^{2}) }^{ \frac{x}{2}  } +  { ({2}^{2}) }^{  - \frac{x}{2} }  - 2 }{ {x}^{2} }

 = \displaystyle \lim_{x \to 0}  \:  \: \frac{ {2}^{ x } +  {2}^{  - x }  - 2 }{ {x}^{2} } \:  \:  \:  ( \:  \: \frac{0}{0}  \: form \: )

 = \displaystyle \lim_{x \to 0}  \:  \: \frac{ {2}^{ x }log2  -   {2}^{  - x }log2  }{ 2{x} } \:  \:  \:

 =   \displaystyle \frac{log2}{2} \times \lim_{x \to 0}  \:  \: \frac{ {2}^{ x }  -   {2}^{  - x }}{ {x} } \:  \:  \:  ( \:  \: \frac{0}{0}  \: form \: )

 =   \displaystyle \frac{ {(log2)} }{2}\lim_{x \to 0}  \:  \: \frac{ {2}^{ x }log2   +   {2}^{  - x }log2  }{ 1} \:  \:  \:

 =   \displaystyle \frac{ {(log2)}^{2} }{4}\lim_{x \to 0}  \:  \: { ({2}^{ x }   +    {2}^{  - x })  } \:  \:  \:

 =   \displaystyle \frac{ {(log2)}^{2} }{4}(2 + 2)

 =   \displaystyle \frac{ {(log2)}^{2} }{4} \times 4

 =     \displaystyle { {(log2)}^{2} }

\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}</p><p></p><p>

Similar questions