Math, asked by jiajeswin1011, 7 days ago

lim x->0 (cos x)^1/x²​

Answers

Answered by amansharma264
3

EXPLANATION.

\sf \implies \displaystyle  \lim_{x \to 0} (cos x)^{1/x^{2} }

As we know that,

First we put the value of x = 0 in equation and check their indeterminant form, we get.

\sf \implies \displaystyle  \lim_{x \to 0} (cos(0))^{1/0} = \dfrac{\infty}{\infty}

As we can see that it is a ∞/∞ form indeterminant.

\sf \implies \displaystyle  \lim_{x \to 0} e^{ln \bigg[(cos x)^{1/x^{2} } \bigg]}

\sf \implies \displaystyle  \lim_{x \to 0} e ^{1/x^{2}  \bigg[ ln(cos x) \bigg]}

\sf \implies \displaystyle  \lim_{x \to 0} e^{\bigg[\dfrac{ln(cos x)}{x^{2} }\bigg] }

\sf \implies e^{\displaystyle  \lim_{x \to 0} \bigg[\dfrac{ln(cos x)}{x^{2} } \bigg]}

Put the values of x = 0 in equation again and check indeterminant form, we get.

\sf \implies e^{\displaystyle  \lim_{x \to 0} \bigg[\dfrac{ln(cos(0))}{0} \bigg]

As we can see that, it is a form of 0/0 indeterminant,

Now apply L-HOSPITAL'S rule, we get.

\sf \implies e^{\displaystyle  \lim_{x \to 0} \bigg[\dfrac{-sin x/cosx}{2x} \bigg]

\sf \implies e^{\displaystyle  \lim_{x \to 0}  \bigg[\dfrac{-sin x}{2x (cos x)} \bigg]

Now again it is in form of 0/0 indeterminant again apply L-HOSPITAL'S rule, we get.

\sf \implies e^{\displaystyle  \lim_{x \to 0} \bigg[ \dfrac{- cosx}{2(-x sin x + cos x)} \bigg]

Put the value of x = 0 in equation, we get.

\sf \implies e^{\bigg[\dfrac{-cos(0)}{2(-x sin(0) + cos(0)} \bigg]

\sf \implies e^{-1/2} = \dfrac{1}{\sqrt{e} }

\sf \implies \displaystyle  \lim_{x \to 0} (cos x)^{1/x^{2} } = \dfrac{1}{\sqrt{e} }

                                                                                                                         

MORE INFORMATION.

Some limits which do not exists.

\sf (1)= \displaystyle  \lim_{x \to 0} \bigg(\dfrac{1}{x} \bigg)

\sf (2)= \displaystyle  \lim_{x \to 0} (x)^{1/x}

\sf (3)= \displaystyle  \lim_{x \to 0} \dfrac{|x|}{x}

\sf (4)= \displaystyle  \lim_{x \to a} \dfrac{|x - a|}{x - a}

\sf (5)= \displaystyle  \lim_{x \to 0} sin \bigg(\dfrac{1}{x} \bigg)

\sf (6)= \displaystyle  \lim_{x \to 0} cos\bigg(\dfrac{1}{x} \bigg)

\sf (7)= \displaystyle  \lim_{x \to 0} (e)^{1/x}

\sf (8)= \displaystyle  \lim_{x \to \infty} sin(x)

\sf (9)= \displaystyle  \lim_{x \to \infty} cos(x)

Similar questions