Math, asked by Kulshresth0, 1 year ago

Lim x_>0 e^sinx-1/log(1+x)

Answers

Answered by Anonymous
14

\Huge{\underline{\underline{\mathfrak{Question \colon }}}}

Evaluate the given limit :

 \lim   \:  \:  \:  \:  \:  \:  \:  \tt{\frac{ {e}^{sin \: x}  - 1}{ log(1 + x) } } \: \\ \tt{x \longrightarrow}0

\Huge{\underline{\underline{\mathfrak{Solution \colon }}}}

Given Expression,

 \lim   \:  \:  \:  \:  \:  \:  \:  \tt{\frac{ {e}^{sin \: x}  - 1}{ log(1 + x) } } \: \\ \tt{x \longrightarrow}0

  • At x = 0,the given function is in indeterminable form.

On substituting x = 0,we would get log(1) in the denominator of the given function. But log(1) = 0,thus the given function is in n/0 form

L'Hospital Rule

  • The derivatives of numerator and denominator are found separately and equated to the precursor step

  • The above rule can be only applied when the given function would be of 0/0 and ∞/∞ form

I would be doing both the processes separately for clarity,not to be confused

Numerator

\boxed{\begin{minipage}{8 cm}$\longmapsto\:\tt\dfrac{d(e^{\sin x}-1)}{dx}\\\\$\longmapsto\:\tt\dfrac{d(e^{\sin x})}{dx}-\dfrac{d(1)}{dx}\\\\$\longmapsto\:\tt e^{\sin x}\qquad\quad---(1)\end{minipage}}

  • Derivative of an exponential function is the very same
  • Derivative of a constant is zero

Denominator

 \boxed{\begin{minipage}{7 cm} $\tt{ \dfrac{d[log(1 + x)] }{dx} } \\  \\  \longmapsto \:  \tt{ \dfrac{1}{x + 1} } -  -  -  -  - (2)$ \end{minipage}}

From expressions (1) and (2),we get :

 \lim \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt{\dfrac{ {e}^{sin \: x} }{ (\dfrac{1}{x + 1}) } } \\   \tt{x \longrightarrow \: 0}

Putting x = 0,we get :

 \hookrightarrow \:  \tt{ {e}^{sin \: 0} } \\  \\  \huge{ \hookrightarrow \: \tt{0}} \:

Thus at x = 0,the limit of the above function is zero

Similar questions