Math, asked by om3006, 4 months ago

lim (x--> 0) sin ax- sin bx/ sin cx - sin dx​

Answers

Answered by mathdude500
2

Evaluate

\rm \:\lim_{x\to 0} \: \dfrac{sinax \:  - \:  sinbx}{sincx \:  -  \:sindx }

\large\underline\purple{\bold{Solution :-  }}

Concept used :-

Concept used :- L - Hospital Rule

  • So, L'Hospital's Rule tells us that if we have an indeterminate form 0/0 or ∞/∞ all we need to do is differentiate the numerator and differentiate the denominator and then take the limit.

Now,

Consider,

\rm \:\lim_{x\to 0} \: \dfrac{sinax \:  - \:  sinbx}{sincx \:  -  \:sindx }

On substituting the value of x directly, we get indeterminant form

So, By L Hospital Rule, we have

 =  \: \rm \:\lim_{x\to 0} \: \dfrac{\dfrac{d}{dx} (sinax \:  - \:  sinbx)}{\dfrac{d}{dx} (sincx \:  -  \:sindx) }

 = \rm \:\lim_{x\to 0} \: \dfrac{a \: cosax \:  - \:  b \: cosbx}{c \: coscx \:  -  d\:cosdx }

\rm :  \implies \: \dfrac{a \:  -  \: b}{c \:  -  \: d}

\large{\boxed{\boxed{\bf{Explore \ more : - }}}}

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{sin \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{tan \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ log(1 + x)  \: }{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {e}^{x}  \:  -  \: 1}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {a}^{x} \:  -  \: 1 }{x} \:  =  \:  log(a)  }}}}}} \\ \end{gathered}

Similar questions