Math, asked by rajannasarma, 1 month ago

lim (x->0) x+ln (root over x2+1-x) /x3. Evalute​

Answers

Answered by amansharma264
24

EXPLANATION.

\sf \implies \displaystyle  \lim_{x \to 0} \dfrac{x + ln(\sqrt{x^{2} + 1} - x)}{x^{3} }

As we know that,

Firstly, we put the value of x = 0 in the equation and check their indeterminant form, we get.

\sf \implies \displaystyle  \lim_{x \to 0}  \dfrac{(0) + ln(\sqrt{(0)^{2}+ 1 } - 0)}{(0)^{3} }

\sf \implies \displaystyle  \lim_{x \to 0} = \dfrac{0}{0} \ form

As we can see that,

This equation is 0/0 indeterminant form.

Apply L-HOSPITAL'S rule in this equation, we get.

\sf \implies \displaystyle  \lim_{x \to 0}  \dfrac{1 - \bigg( \dfrac{1}{\sqrt{x^{2} + 1} } \bigg)}{3x^{2} }

\sf \implies \displaystyle  \lim_{x \to 0}  \dfrac{\sqrt{x^{2} + 1} - 1}{3x^{2} (\sqrt{x^{2} + 1} )}

As we know that,

If roots exists in 0/0 form then we can simply rationalizes the equation, we get.

\sf \implies \displaystyle  \lim_{x \to 0}  \bigg( \dfrac{\sqrt{x^{2} + 1} - 1}{3x^{2} (\sqrt{x^{2}+ 1 } )} \times \dfrac{\sqrt{x^{2} +1} + 1}{\sqrt{x^{2} + 1}+ 1 } \bigg)

\sf \implies \displaystyle  \lim_{x \to 0}  \bigg( \dfrac{x^{2}  + 1 - 1}{3x^{2} (\sqrt{x^{2} + 1} )(\sqrt{x^{2} + 1} + 1} \bigg)

\sf \implies \displaystyle  \lim_{x \to 0}  \bigg( \dfrac{1}{3(\sqrt{x^{2} + 1} )(\sqrt{x^{2} + 1} + 1)} \bigg)

Put the value of x = 0 in the equation, we get.

\sf \implies \displaystyle  \lim_{x \to 0}  \bigg( \dfrac{1}{3 (\sqrt{(0)^{2} + 1} )(\sqrt{(0)^{2} + 1}+ 1 } \bigg)

\sf \implies \displaystyle \bigg( \dfrac{1}{3(1)(2)} \bigg) = \dfrac{1}{6}

\sf \implies \displaystyle  \lim_{x \to 0} \dfrac{x + ln(\sqrt{x^{2} + 1} - x)}{x^{3} } = \dfrac{1}{6}

                                                                                                                   

MORE INFORMATION.

\sf (1)= \displaystyle  \lim_{x \to 0} \bigg( \dfrac{sin(x)}{x} \bigg) =  \lim_{x \to 0} \bigg( \dfrac{x}{sin(x)} \bigg) = 1 ; \ \   \lim_{x \to 0} sin(x) = 0

\sf (2)= \displaystyle  \lim_{x \to 0} cos(x) =  \lim_{x \to0} \bigg( \dfrac{1}{cos(x)} \bigg) = 1.

\sf (3)= \displaystyle  \lim_{x \to 0} \bigg( \dfrac{tan(x)}{x} \bigg) =  \lim_{x \to 0} \bigg( \dfrac{x}{tan(x)} \bigg) = 1 \ ;  \lim_{x \to 0} tan(x) = 0.

\sf (4)= \displaystyle  \lim_{x \to 0} \bigg(\dfrac{sin^{-1} x}{x} \bigg) =  \lim_{x \to 0} \bigg( \dfrac{x}{sin^{-1} x}  \bigg) = 1.

\sf (5)= \displaystyle  \lim_{x \to 0} \bigg( \dfrac{tan^{-1} x}{x} \bigg) =  \lim_{x \to 0} \bigg( \dfrac{x}{tan^{-1} x} \bigg) = 1.

Answered by Anonymous
24

Answer:

□Given:-

  •  \frac{lim}{x - 0}  =  \frac{x + in( \sqrt{ {x}^{2}  + 1 }  - x}{ {x}^{3} }

□To find :-

  • We should evaluate the equation and get answer.

♤Explanation :-

  • Refer the attachment for more information.
  • I'm this you will get correct answer. I cant do in in this answer so i am sharing the attachment .
  • Here we get answer as 1/6.

Used formula :-

  • Here we used L-Hospital Rule to get answer.

♧Hope it helps u mate .

♧Thank you .

Attachments:
Similar questions