Math, asked by dakshinauttam806, 11 hours ago

lim x->3. √3+x-2/x-3
solve​

Attachments:

Answers

Answered by MathCracker
41

Question :-

 :   \longmapsto{ \displaystyle \lim_{ \sf{x \to3}} \sf {\frac{ \sqrt{3 + x}  -  \sqrt{6} }{x - 6} }}

Solution :-

:\longmapsto{\displaystyle\lim_{\sf{x \to 3}} \sf{ \frac{ \sqrt{3 + x} -  \sqrt{6}  }{x - 3}  \times  \frac{ \sqrt{3 + x} +  \sqrt{6}  }{ \sqrt{3 + x}  +  \sqrt{6} } }} \\ \\   \\:\longmapsto{\displaystyle\lim_{\sf{x \to 3}} \sf{ \frac{( \sqrt{3 + x}) {}^{2}  - ( \sqrt{6} ) {}^{2}  }{(x - 3)( \sqrt{3 + x}  +  \sqrt{6} )} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\  \\  \\ :\longmapsto{\displaystyle\lim_{\sf{x \to 3}} \sf{ \frac{3 + x - 6}{(x - 3)( \sqrt{3 + x} +  \sqrt{6}  )} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \\ :\longmapsto{\displaystyle\lim_{\sf{x \to 3}} \sf{ \frac{ \cancel{x - 3}}{ \cancel{(x - 3)}( \sqrt{3 + x} +  \sqrt{6}  } }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ :\longmapsto{\displaystyle\lim_{\sf{x \to 3}} \sf{ \frac{1}{ \sqrt{3 + 3} + 6 } }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ :\longmapsto{\displaystyle\lim_{\sf{x \to 3}} \sf{ \frac{1}{ \sqrt{6} +  \sqrt{6}  } }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Answer :

 \bigstar \:  \boxed{\displaystyle\lim_{\sf{x \to 3}} \sf{ \frac{1}{2 \sqrt{6} } }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

1. Lim x➡a (x+2)^3÷2 - (a+2)^3÷2 / (x-a)

https://brainly.in/question/10108745

2. Lim x→∞ x^3/e^x . Solve this

https://brainly.in/question/7124692

Similar questions