Math, asked by ansulibasumatary397, 4 months ago

lim x -->a
x√x-a√a/x-a​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

 \:  \:  \:  \displaystyle\sf \:\lim_{x\to a}\dfrac{x \sqrt{x} - a \sqrt{a}  }{x - a}

 \sf \:  =  \:  \:  \: \dfrac{a \sqrt{a} - a \sqrt{a}  }{a - a}

 \sf \:  =  \:  \:  \: \dfrac{0}{0}

which is indeterminant form.

So, we can rewrite this as

  = \:  \:  \:  \displaystyle\sf \:\lim_{x\to a}\dfrac{ {x}^{ \frac{3}{2} }  -  {a}^{ \frac{3}{2} } }{x - a}

We know that,

 \boxed{ \sf \:  \:  \:  \:  \displaystyle\sf \:\lim_{x\to a}\dfrac{ {x}^{n} -  {a}^{n}  }{x - a}  =  {na}^{n - 1} }

Now,

\rm :\longmapsto\:Here \: n \:  =  \: \dfrac{3}{2}

So, we get

 \implies\:  \:  \:  \displaystyle\sf \:\lim_{x\to a}\dfrac{ {x}^{ \frac{3}{2} }  -  {a}^{ \frac{3}{2} } }{x - a}  = \dfrac{3}{2}   \: {a}^{ \frac{3}{2}  - 1}  = \dfrac{3}{2}  \sqrt{a}

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information :-

 \:  \:  \:  \displaystyle\sf \:\lim_{x\to 0}\dfrac{sinx}{x}  = 1

 \:  \:  \:  \displaystyle\sf \:\lim_{x\to 0}\dfrac{tanx}{x}  = 1

 \:  \:  \:  \displaystyle\sf \:\lim_{x\to 0}\dfrac{ log(1 + x) }{x}  = 1

 \:  \:  \:  \displaystyle\sf \:\lim_{x\to 0}\dfrac{ {e}^{x} - 1 }{x}  = 1

 \:  \:  \:  \displaystyle\sf \:\lim_{x\to 0}\dfrac{ {a}^{x}  - 1}{x}  =  {a}^{x}  log(a)

Similar questions