lim(x->infinity) {(√x²+a²) - (√x²+b²)}÷{(√x²+c²) - (√x²+d²)}
A) (a²-b²)÷(c²-d²) B) (a²+b²)÷(c²-d²) C) (a²+b²)÷(c²+d²)
D) None of these
Answers
Answered by
4
rationalise numerator & denominator we get
lim (a²-b²){(√x²+c²) + (√x²+d²)} ÷ (c²-d²){(√x²+a²) + (√x²+b²)}
x------>∞
(a²-b²)/(c²-d²) lim {(√1+c²/x²) + (√1+d²/x²)} ÷ {(√1+a²/x²) + (√1+b²/x²)}
x------->∞
= (a²-b²)/(c²-d²) {(1+1)/(1+1)} (a²/x² = a²/∞² = 0 & so on for b,c,d)
= (a²-b²)/(c²-d²)
hence (A) option is correct
lim (a²-b²){(√x²+c²) + (√x²+d²)} ÷ (c²-d²){(√x²+a²) + (√x²+b²)}
x------>∞
(a²-b²)/(c²-d²) lim {(√1+c²/x²) + (√1+d²/x²)} ÷ {(√1+a²/x²) + (√1+b²/x²)}
x------->∞
= (a²-b²)/(c²-d²) {(1+1)/(1+1)} (a²/x² = a²/∞² = 0 & so on for b,c,d)
= (a²-b²)/(c²-d²)
hence (A) option is correct
doraemondorami2:
thanks a lot
Answered by
0
Answer:
A) (a^2 - b^2)÷(c^2 - d^2)
Attachments:
Similar questions