Math, asked by saritarishab, 4 months ago

lim/X,=infinity. ✓3x^2-2 + ✓2x^2+5/5x-3​

Answers

Answered by mathdude500
3

\large\underline\purple{\bold{Solution :-  }}

\bf \: \displaystyle \rm \ \lim_{ x\to \infty} \dfrac{ \sqrt{ {3x}^{2} - 2 }  +  \sqrt{ {2x}^{2} + 5 } }{5x - 3}

\bf \:  = \displaystyle \rm \ \lim_{ x\to \infty} \dfrac{ \sqrt{ {x}^{2}\bigg(3 - \dfrac{2}{ {x}^{2} }  \bigg)} +  \sqrt{ {x}^{2}\bigg(2 + \dfrac{5}{ {x}^{2} }  \bigg) }  }{x\bigg(5 - \dfrac{3}{x}  \bigg)}

\bf \:  = \displaystyle \rm \ \lim_{ x\to \infty} \dfrac{x \sqrt{ \bigg(3 - \dfrac{2}{ {x}^{2} }  \bigg)} +  x\sqrt{ \bigg(2 + \dfrac{5}{ {x}^{2} }  \bigg) }  }{x\bigg(5 - \dfrac{3}{x}  \bigg)}

\bf \:  = \displaystyle \rm \ \lim_{ x\to \infty} \dfrac{ x \bigg(\sqrt{ \bigg(3 - \dfrac{2}{ {x}^{2} }  \bigg)} +  \sqrt{ \bigg(2 + \dfrac{5}{ {x}^{2} }  \bigg) }   \bigg)}{x\bigg(5 - \dfrac{3}{x}  \bigg)}

\bf \:  = \displaystyle \rm \ \lim_{ x\to \infty} \dfrac{ \sqrt{ \bigg(3 - \dfrac{2}{ {x}^{2} }  \bigg)} +  \sqrt{ \bigg(2 + \dfrac{5}{ {x}^{2} }  \bigg) }  }{\bigg(5 - \dfrac{3}{x}  \bigg)}

\bf \:  =  \: \dfrac{ \sqrt{3 - 0}  +  \sqrt{2 - 0} }{5 - 0}

\bf \:   = \dfrac{ \sqrt{3} +  \sqrt{2}  }{5}

Similar questions