Math, asked by Anonymous, 10 hours ago

lim x pi/ 2 (secx-tanx)/ (pi /2 -x)​

Answers

Answered by mathdude500
18

\large\underline{\sf{Solution-}}

Given expression is

\displaystyle\lim_{x \to \dfrac{\pi}{2}}\rm  \:  \frac{secx - tanx}{\dfrac{\pi}{2}  - x}

If we substitute directly the value of x, we get

\rm \:  =  \: \dfrac{sec\dfrac{\pi}{2} - tan\dfrac{\pi}{2}}{\dfrac{\pi}{2} - \dfrac{\pi}{2}}

\rm \:  =  \: \dfrac{ \infty  -  \infty }{0}

which is indeterminant form.

So, Consider again

\displaystyle\lim_{x \to \dfrac{\pi}{2}}\rm  \:  \frac{secx - tanx}{\dfrac{\pi}{2}  - x}

To evaluate this limit, we use Method of Substitution.

So, Substitute

\rm \: x = \dfrac{\pi}{2} - h, \:  \: as \: x \:  \to \: \dfrac{\pi}{2}, \:  \: so \: h \:  \to \: 0

So, on substituting this in above step, we get

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{sec\bigg(\dfrac{\pi}{2} - h\bigg) - tan \bigg(\dfrac{\pi}{2} - h \bigg) }{\dfrac{\pi}{2} - \dfrac{\pi}{2} + h}  \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{cosech - coth}{h}

can be further rewritten as

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{1}{h}\bigg[\dfrac{1}{sinh} -  \frac{cosh}{sinh}  \bigg]

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{1}{h}\bigg[\dfrac{1 - cosh}{sinh}\bigg]

We know,

\boxed{\tt{ 1 - cos2x =  {2sin}^{2}x}} \\  \\ and \\  \\ \boxed{\tt{ sin2x = 2 \: sinx \: cosx \: }} \\

So, using these Identities, we get

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{2 {sin}^{2}  \dfrac{h}{2} }{h \: \bigg(2 \: sin\dfrac{h}{2} \: cos\dfrac{h}{2}\bigg)}  \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{tan\dfrac{h}{2}}{h}  \\

can be further rewritten as

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{tan\dfrac{h}{2}}{\dfrac{h}{2} \times 2}  \\

\rm \:  =  \:  \dfrac{1}{2} \displaystyle\lim_{h \to 0}\rm  \frac{tan\dfrac{h}{2}}{\dfrac{h}{2}}  \\

We know,

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x}  \:  =  \: 1 \: }} \\

So, using this result, we get

\rm \:  =  \: \dfrac{1}{2}  \times 1

\rm \:  =  \: \dfrac{1}{2}

Hence,

\rm\implies \:\boxed{\tt{  \: \displaystyle\lim_{x \to \dfrac{\pi}{2}}\rm  \:  \frac{secx - tanx}{\dfrac{\pi}{2}  - x}  =  \frac{1}{2} }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x}  \:  =  \: 1 \: }} \\

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x}  \:  =  \: 1 \: }} \\

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x}  \:  =  \: 1 \: }} \\

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x}  \:  =  \: loga \: }} \\


tejasgupta: Very well explained. Great work!
Answered by ItzNobita50
209

\huge\green{Solution:-}

  • Please see the attached file
Attachments:
Similar questions