Math, asked by joya80, 4 days ago

\lim _ { x \rightarrow 1 } \frac { 1 - x ^ { 2 } } { \sin \pi x }​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x \to 1}\rm  \frac{1 -  {x}^{2} }{sin \: \pi \: x}  \\

If we substitute directly x = 1, we get

\rm \:  =  \: \dfrac{1 - 1}{sin\pi}  \\

\rm \:  =  \: \dfrac{0}{0}  \\

which is indeterminant form

Now, Consider

\rm \: \displaystyle\lim_{x \to 1}\rm  \frac{1 -  {x}^{2} }{sin \: \pi \: x}  \\

can be rewritten as

\rm \: =  \:  \displaystyle\lim_{x \to 1}\rm  \frac{(1 + x)(1 - x)}{sin \: \pi \: x}  \\

\rm \: =  \: \displaystyle\lim_{x \to 1}\rm (x + 1) \times  \displaystyle\lim_{x \to 1}\rm  \frac{1 - x}{sin \: \pi \: x}  \\

\rm \: =  \: 2 \displaystyle\lim_{x \to 1}\rm  \frac{1 - x}{sin \: \pi \: x}  \\

To evaluate this limit, we use method of Substitution,

So, substitute

\rm \: x = 1 - h, \:  \:  \: as \: x \:  \to \: 1, \:  \: so \: h \:  \to \: 0 \\

So, above expression can be rewritten as

\rm \:  =  \: 2\displaystyle\lim_{h \to 0}\rm \dfrac{1 - (1 - h)}{sin\pi \: (1 - h)}  \\

\rm \:  =  \: 2\displaystyle\lim_{h \to 0}\rm \dfrac{1 - 1  +  h}{sin(\pi  - \pi \: h)}  \\

\rm \:  =  \: 2\displaystyle\lim_{h \to 0}\rm \dfrac{h}{sin \: \pi \: h}  \\

can be rewritten as

\rm \:  =  \: 2\displaystyle\lim_{h \to 0}\rm \dfrac{\pi \: h}{sin \: \pi \: h}  \times  \frac{1}{\pi}  \\

can be further rewritten as

\rm \:  =  \: 2\displaystyle\lim_{\pi \: h \to 0}\rm \dfrac{\pi \: h}{sin \: \pi \: h}  \times  \frac{1}{\pi}  \\

We know,

\color{green}\boxed{ \rm{ \:\displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x}  = 1 \:  \: }} \\

So, using this result, we get

\rm \:  =  \: 2 \times 1 \times \dfrac{1}{\pi}  \\

\rm \:  =  \: \dfrac{2}{\pi}  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \displaystyle\lim_{x \to 1}\rm  \:  \:  \frac{1 -  {x}^{2} }{sin \: \pi \: x} =  \frac{2}{\pi}  \:  \: }}  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{sinx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{tanx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{log(1 + x)}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {e}^{x}  - 1}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {a}^{x}  - 1}{x} = loga}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by diwanamrmznu
4

 \implies   \lim_{x \to \: 1} \:  \frac{1 - x {}^{2} }{ \sin \pi \: x}  \\  \\ put \: limit \\  \\  \implies \:  \frac{1 -  {1}^{2} }{ \sin \pi \: }  \\  \\  \implies \:  \frac{0}{0}  \\  \\ indeterminant \: form \: \\  so \: we \: use \: l \: hospital \\  \\  \implies \: \lim_{x \to \: 1} \:   \frac{d}{dx} \frac{1 -  {x}^{2} }{ \frac{d}{dx}  \sin \pi \: x \: . \frac{d}{dx}  \pi \: x}  \\  \\  \implies \: \lim_{x \to \: 1} \:  \frac{ - 2x}{ \cos \pi \: x \: . \pi}  \\  \\ \implies \: \lim_{x \to \: 1} \:  \:  \frac{ - 2x}{ \pi \: . \cos \pi \: x}  \\  \\ put \: limit \\  \\  \implies \:  \frac{ - 2(1)}{ \pi \: cos \pi}  \\  \\  \implies \:  \frac{  \cancel{-} \:  \:  2}{ \pi \: (  \cancel{-} \:  \:  1)}  \\  \\  \implies \boxed{ \red{ \frac{2}{ \pi}} }

________________________

thanks

Similar questions